977 resultados para Turbulent channel flows
Resumo:
To resolve many flow features accurately, like accurate capture of suction peak in subsonic flows and crisp shocks in flows with discontinuities, to minimise the loss in stagnation pressure in isentropic flows or even flow separation in viscous flows require an accurate and low dissipative numerical scheme. The first order kinetic flux vector splitting (KFVS) method has been found to be very robust but suffers from the problem of having much more numerical diffusion than required, resulting in inaccurate computation of the above flow features. However, numerical dissipation can be reduced by refining the grid or by using higher order kinetic schemes. In flows with strong shock waves, the higher order schemes require limiters, which reduce the local order of accuracy to first order, resulting in degradation of flow features in many cases. Further, these schemes require more points in the stencil and hence consume more computational time and memory. In this paper, we present a low dissipative modified KFVS (m-KFVS) method which leads to improved splitting of inviscid fluxes. The m-KFVS method captures the above flow features more accurately compared to first order KFVS and the results are comparable to second order accurate KFVS method, by still using the first order stencil. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A one-dimensional water wire has been characterized by X-ray diffraction in single crystals of the tripeptide Ac-Phe-Pro-Trp-OMe. Crystals in the hexagonal space group P6(5) reveal a central hydrophobic channel lined by aromatic residues which entraps an approximately linear array of hydrogen bonded water molecules. The absence of any significant van der Waals contact with the channel walls suggests that the dominant interaction between the ``water wire'' and ``peptide nanotube'' is electrostatic in origin. An energy difference of 16 KJmol(-1) is estimated for the distinct orientations of the water wire dipole with respect to the macrodipole of the peptide nanotube. The structural model suggests that Grotthuss type proton conduction may, through constricted hydrophobic channels, be facilitated by concerted, rotational reorientation of water molecules.
Resumo:
In order to study the memory of the larger eddies in turbulent shear flow, experiments have been conducted on plane turbulent wakes undergoing transition from an initial (carefully prepared) equilibrium state to a different final one, as a result of a nearly impulsive pressure gradient. It is shown that under the conditions of the experiments the equations of motion possess self-preserving solutions in the sense of Townsend (1956), but the observed behaviour of the wake is appreciably different when the pressure gradient is not very small, as the flow goes through a slow relaxation process before reaching final equilibrium. Measurements of the Reynolds stresse show that the approach to a new equilibrium state is exponential, with a relaxation length of the order of 103 momentum thicknesses. It is suggested that a flow satisfying the conditions required by a self-preservation analysis will exhibit equilibrium only if the relaxation length is small compared with a characteristic streamwise length scale of the flow.
Resumo:
We consider here the detailed application of a model Reynolds stress equation (Narasimha 1969) to plane turbulent wakes subjected to pressure gradients. The model, which is a transport equation for the stress exhibiting relaxation and diffusion, is found to be consistent with the observed response of a wake to a nearly impulsive pressure gradient (Narasimha & Prabhu 1971). It implies in particular that a wake can be in equilibrium only if the longitudinal strain rate is appreciably less than the wake shear. We then describe a further series of experiments, undertaken to investigate the range of validity of the model. It is found that, with an appropriate convergence correction when necessary, the model provides excellent predictions of wake development under favourable, adverse and mixed pressure gradients. Furthermore, the behaviour of constant-pressure distorted wakes, as reported by Keffer (1965, 1967), is also explained very well by the model when account is taken of the effective flow convergence produced by the distortion. In all these calculations, only a simple version of the model is used, involving two non-dimensional constants both of which have been estimated from a single relaxation experiment.
Resumo:
Using a hot wire in a turbulent boundary layer in air, an experimental study has been made of the frequent periods of activity (to be called ‘bursts’) noticed in a turbulent signal that has been passed through a narrow band-pass filter. Although definitive identification of bursts presents difficulties, it is found that a reasonable characteristic value for the mean interval between such bursts is consistent, at the same Reynolds number, with the mean burst periods measured by Kline et al. (1967), using hydrogen-bubble techniques in water. However, data over the wider Reynolds number range covered here show that, even in the wall or inner layer, the mean burst period scales with outer rather than inner variables; and that the intervals are distributed according to the log normal law. It is suggested that these ‘bursts’ are to be identified with the ‘spottiness’ of Landau & Kolmogorov, and the high-frequency intermittency observed by Batchelor & Townsend. It is also concluded that the dynamics of the energy balance in a turbulent boundary layer can be understood only on the basis of a coupling between the inner and outer layers.
Resumo:
An experimental study has been made of transition to turbulence in the free convective flows on a heated plate. Observations have been made with the plate vertical and inclined at angles up to about 50° to the vertical, both above and below the plate. A fibre anemometer was used to survey the region of intermittent turbulence. Information has thus been obtained about the range of Grashof numbers over which transition takes place. Even when the plate is vertical the region of intermittent turbulence is long. When it is inclined, this region becomes still longer in the flow below the plate as a result of the stabilizing stratification, a Richardson number effect. It is possible to have a whole flow such that it should be described as transitional, not laminar or turbulent. It was noticed that in this flow and the vertical plate one, the velocity during the laminar periods could be either of two characteristic values, one of them close to zero. The behaviour above an inclined plate could be interpreted largely as a trend towards the behaviour described in a preceding paper.
Resumo:
An investigation has been made of the structure of the motion above a heated plate inclined at a small angle (about 10°) to the horizontal. The turbulence is considered in terms of the similarities to and differences from the motion above an exactly horizontal surface. One effect of inclination is, of course, that there is also a mean motion. Accurate data on the mean temperature field and the intensity of the temperature fluctuations have been obtained with platinum resistance thermometers, the signals being processed electronically. More approximate information on the velocity field has been obtained with quartz fibre anemometers. These results have been supplemented qualitatively by simultaneous observations of the temperature and velocity fluctuations and also by smoke experiments. The principal features of the flow inferred from these observations are as follows. The heat transfer and the mean temperature field are not much altered by the inclination, though small, not very systematic, variations may result from the complexities of the velocity field. This supports the view that the mean temperature field is largely governed by the large-scale motions. The temperature fluctuations show a systematic variation with distance from the lower edge and resemble those above a horizontal plate when this distance is large. The largescale motions of the turbulence start close to the lower edge, but the smaller eddies do not attain full intensity until the air has moved some distance up the plate. The mean velocity receives a sizable contribution from a ‘through-flow’ between the side-walls. Superimposed on this are developments that show that the momentum transfer processes are complex and certainly not capable of representation by any simple theory such as an eddy viscosity. On the lower part of the plate there is surprisingly large acceleration, but further up the mixing action of the small eddies has a decelerating effect.
Resumo:
The slow flow of granular materials is often marked by the existence of narrow shear layers, adjacent to large regions that suffer little or no deformation. This behaviour, in the regime where shear stress is generated primarily by the frictional interactions between grains, has so far eluded theoretical description. In this paper, we present a rigid-plastic frictional Cosserat model that captures thin shear layers by incorporating a microscopic length scale. We treat the granular medium as a Cosserat continuum, which allows the existence of localised couple stresses and, therefore, the possibility of an asymmetric stress tensor. In addition, the local rotation is an independent field variable and is not necessarily equal to the vorticity. The angular momentum balance, which is implicitly satisfied for a classical continuum, must now be solved in conjunction with the linear momentum balances. We extend the critical state model, used in soil plasticity, for a Cosserat continuum and obtain predictions for flow in plane and cylindrical Couette devices. The velocity profile predicted by our model is in qualitative agreement with available experimental data. In addition, our model can predict scaling laws for the shear layer thickness as a function of the Couette gap, which must be verified in future experiments. Most significantly, our model can determine the velocity field in viscometric flows, which classical plasticity-based model cannot.
Resumo:
The flow of a stratified fluid in a channel with small and large deformations is investigated. The analogy of this flow with swirling flow in tubes with non-uniform cross-sections is studied. The flow near the wall is blocked when the Froude number takes certain critical values. The possibility of preventing the stagnation zones in the flow field is also discussed
Resumo:
A fluctuating-force model is developed for representing the effect of the turbulent fluid velocity fluctuations on the particle phase in a turbulent gas–solid suspension in the limit of high Stokes number, where the particle relaxation time is large compared with the correlation time for the fluid velocity fluctuations. In the model, a fluctuating force is incorporated in the equation of motion for the particles, and the force distribution is assumed to be an anisotropic Gaussian white noise. It is shown that this is equivalent to incorporating a diffusion term in the Boltzmann equation for the particle velocity distribution functions. The variance of the force distribution, or equivalently the diffusion coefficient in the Boltzmann equation, is related to the time correlation functions for the fluid velocity fluctuations. The fluctuating-force model is applied to the specific case of a Couette flow of a turbulent particle–gas suspension, for which both the fluid and particle velocity distributions were evaluated using direct numerical simulations by Goswami & Kumaran (2010). It is found that the fluctuating-force simulation is able to quantitatively predict the concentration, mean velocity profiles and the mean square velocities, both at relatively low volume fractions, where the viscous relaxation time is small compared with the time between collisions, and at higher volume fractions, where the time between collisions is small compared with the viscous relaxation time. The simulations are also able to predict the velocity distributions in the centre of the Couette, even in cases in which the velocity distribution is very different from a Gaussian distribution.
Resumo:
Transition in the boundary layer on a flat plate is examined from the point of view of intermittent production of turbulent spots. On the hypothesis of localized laminar breakdown, for which there is some expermental evidence, Emmons’ probability calculations can be extended to explain the observed statistical similarity of transition regions. Application of these ideas allows detailed calculations of the boundary layer parameters including mean velocity profiles and skin friction during transition. The mean velocity profiles belong to a universal one-parameter family with the intermittency factor as the parameter. From an examination of experimental data the probable existence of a relation between the transition Reynolds number and the rate of production of the turbulent spots is deduced. A simple new technique for the measurement of the intermittency factor by a Pitot tube is reported.
Resumo:
The effect of fluid velocity fluctuations on the dynamics of the particles in a turbulent gas–solid suspension is analysed in the low-Reynolds-number and high Stokes number limits, where the particle relaxation time is long compared with the correlation time for the fluid velocity fluctuations, and the drag force on the particles due to the fluid can be expressed by the modified Stokes law. The direct numerical simulation procedure is used for solving the Navier–Stokes equations for the fluid, the particles are modelled as hard spheres which undergo elastic collisions and a one-way coupling algorithm is used where the force exerted by the fluid on the particles is incorporated, but not the reverse force exerted by the particles on the fluid. The particle mean and root-mean-square (RMS) fluctuating velocities, as well as the probability distribution function for the particle velocity fluctuations and the distribution of acceleration of the particles in the central region of the Couette (where the velocity profile is linear and the RMS velocities are nearly constant), are examined. It is found that the distribution of particle velocities is very different from a Gaussian, especially in the spanwise and wall-normal directions. However, the distribution of the acceleration fluctuation on the particles is found to be close to a Gaussian, though the distribution is highly anisotropic and there is a correlation between the fluctuations in the flow and gradient directions. The non-Gaussian nature of the particle velocity fluctuations is found to be due to inter-particle collisions induced by the large particle velocity fluctuations in the flow direction. It is also found that the acceleration distribution on the particles is in very good agreement with the distribution that is calculated from the velocity fluctuations in the fluid, using the Stokes drag law, indicating that there is very little correlation between the fluid velocity fluctuations and the particle velocity fluctuations in the presence of one-way coupling. All of these results indicate that the effect of the turbulent fluid velocity fluctuations can be accurately represented by an anisotropic Gaussian white noise.
Resumo:
A constant-pressure axisymmetric turbulent boundary layer along a circular cylinder of radius a is studied at large values of the frictional Reynolds number a+ (based upon a) with the boundary-layer thickness δ of order a. Using the equations of mean motion and the method of matched asymptotic expansions, it is shown that the flow can be described by the same two limit processes (inner and outer) as are used in two-dimensional flow. The condition that the two expansions match requires the existence, at the lowest order, of a log region in the usual two-dimensional co-ordinates (u+, y+). Examination of available experimental data shows that substantial log regions do in fact exist but that the intercept is possibly not a universal constant. Similarly, the solution in the outer layer leads to a defect law of the same form as in two-dimensional flow; experiment shows that the intercept in the defect law depends on δ/a. It is concluded that, except in those extreme situations where a+ is small (in which case the boundary layer may not anyway be in a fully developed turbulent state), the simplest analysis of axisymmetric flow will be to use the two-dimensional laws with parameters that now depend on a+ or δ/a as appropriate.
Resumo:
In this article, the effect of initial microstructure on the texture evolution in 2014 Al alloy during equal channel angular pressing (ECAP) through route A has been reported. Three heat treatment conditions were chosen to generate the initial microstructures, namely (i) the recrystallization anneal (as-received), (ii) solution treatment at 768 K for 1 h, and (iii) solution treatment (768 K for 1 h) plus aging at 468 K for 5 h. Texture analyses were performed using orientation distribution function (ODF) method. The texture strength after ECAP processing was different for the three samples in the order, solutionised > solutionised plus aged condition > as-received. The prominent texture components were A (E) /(A) over bar (E) and B(E)/(B) over bar (E) in addition to several weaker components for the three materials. The strong texture evolution in solutionised condition has been attributed to higher strain hardening of the matrix due to higher amount of solute. In case of the as-received as well as solutionised plus aged alloy, the weaker texture could be due to the strain scattering from extensive precipitate fragmentation and dissolution during ECAP.