921 resultados para Tungsten carbide
Resumo:
Creep test at 600 °C under 130 MPa for the China Low Activation Martensitic (CLAM) steel was performed up to 7913 h in this study. According to the stress level, the crept specimen was divided into three regions in order to investigate the influence of stress on Laves-phase formation. In addition to the expected M23C6 carbide and MX carbonitride, the amount and the size of Laves phase in these three regions on the crept specimen were characterized by transmission electron microscopy. Laves phase could be found in all the regions and the creep stress could promote the formation of Laves phase.
Resumo:
China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10−3 s−1. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M23C6 carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.
Resumo:
In this paper we present oscillator strengths and transition probabilities for W xlv transitions between levels arising from configurations 3d104s2,4p2,4d2, 3d104k4l (k = s,p,d,f and l = p,d,f), 3d94s24l (l = p,d,f) and 3d94s4p2. The model used to calculate these contained all configurations which can be constructed from the available orbitals (up to n = 4), with either a 3d10 or 3d9 core. The calculations were performed with the configuration interaction CIV3 program with the inclusion of relativistic effects achieved through the use of the Breit-Pauli approximation. We compare our ab initio energy levels, oscillator strengths and transition rates with other experimental and theoretical values available in the literature. There is generally good agreement when only levels with 3d10 cores are considered. The literature is sparse for levels in which the 3d-subshell is opened: for the majority of the fine-structure lines considered, there is either no comparison data available or substantial differences are found. This paper also investigates how the inclusion of relativistic effects can result in a significant redistribution of the oscillator strength from the LS calculations.
Resumo:
Carbides are important phases in heterogeneous catalysis. However, the understanding of carbide phases is inadequate: Fe and Co are the two commercial catalysts for Fischer-Tropsch (FT) synthesis, and experimental work showed that Fe carbide is the active phase in FT synthesis, whereas the appearance of Co carbide is considered as a possible deactivation cause, TO understand very different catalytic roles of carbides, all the key elementary steps in FT synthesis, that is, CO dissociation, C(1) hydrogenation, and C(1)+C(1) coupling, are extensively investigated on both carbide surfaces using first principles calculations. In particular, the most important issues in FT synthesis, the activity and methane selectivity, on the carbide surfaces are quantitatively determined and analyzed. They are also discussed together with metallic Fe and Co surfaces. It is found that (i) Fe carbide is more active than metallic Fe and has similar methane selectivity to Fe, being consistent with the experiments; and (ii) Co carbide is less active than Co and has higher methane selectivity, providing evidence on the molecular level to support the suggestion that the formation of Co carbide is a cause of relatively high methane selectivity and deactivation on Co catalysts.
Resumo:
Deposition of 0.5 ML of Cu on W(100) leads to the formation of a sharp c(2 x 2) structure when the surface is annealed at 800 K. A LEED intensity analysis reveals that the Cu atoms are adsorbed displacively into W sites, forming an ordered 2D surface alloy. Due to the lattice mismatch between copper and tungsten, a substantial buckling of the first layer of the alloy is also observed. The clean, bulk terminated W(100) surface is only just stable relative to the c(2 x 2) vacancy covered W(100) surface. This relative stability of the vacancy structure explains the driving force behind the formation of this alloy.
Resumo:
Energy levels and radiative rates are reported for transitions in Br-like tungsten, W XL, calculated with the general-purpose relativistic atomic structure package (grasp). Configuration interaction (CI) has been included among 46 configurations (generating 4215 levels) over a wide energy range up to 213 Ryd. However, for conciseness results are only listed for the lowest 360 levels (with energies up to ~43 Ryd), which mainly belong to the 4s24p5,4s24p44d,4s24p44f,4s4p6,4p64d,4s4p54d,4s24p34d2, and 4s24p34d4f configurations, and provided for four types of transitions, E1, E2, M1, and M2. Comparisons are made with existing (but limited) results. However, to fully assess the accuracy of our data, analogous calculations have been performed with the flexible atomic code, including an even larger CI than in grasp. Our energy levels are estimated to be accurate to better than 0.02 Ryd, whereas results for radiative rates (and lifetimes) should be accurate to better than 20% for a majority of the strong transitions.
Resumo:
Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).
Resumo:
Modifications of local structure at atomic level could precisely and effectively tune the capacity of materials, enabling enhancement in the catalytic activity. Here we modulate the local atomic structure of a classical but inert transition metal oxide, tungsten trioxide, to be an efficient electrocatalyst for hydrogen evolution in acidic water, which has shown promise as an alternative to platinum. Structural analyses and theoretical calculations together indicate that the origin of the enhanced activity could be attributed to the tailored electronic structure by means of the local atomic structure modulations. We anticipate that suitable structure modulations might be applied on other transition metal oxides to meet the optimal thermodynamic and kinetic requirements, which may pave the way to unlock the potential of other promising candidates as cost-effective electrocatalysts for hydrogen evolution in industry.
Resumo:
In order to investigate the compatibility of candidate structural materials with liquid metals, two kinds of ferritic/martensitic steels were chosen to contact with lead–bismuth eutectic in sealed quartz–glass tubes. The corrosion exposures were for 500 and 3000 h. Results showed that the oxidation layer and carbide dissolution layer on the two steels grew with contact time under oxygen unsaturated condition. Short-term corrosion behavior of a newly developed steel showed better lead–bismuth eutectic corrosion resistance than T91 at 873 K.
Resumo:
Molecular Dynamics Simulations (MDS) are constantly being used to make important contributions to our fundamental understanding of material behaviour, at the atomic scale, for a variety of thermodynamic processes. This chapter shows that molecular dynamics simulation is a robust numerical analysis tool in addressing a range of complex nanofinishing (machining) problems that are otherwise difficult or impossible to understand using other methods. For example the mechanism of nanometric cutting of silicon carbide is influenced by a number of variables such as machine tool performance, machining conditions, material properties, and cutting tool performance (material microstructure and physical geometry of the contact) and all these variables cannot be monitored online through experimental examination. However, these could suitably be studied using an advanced simulation based approach such as MDS. This chapter details how MD simulation can be used as a research and commercial tool to understand key issues of ultra precision manufacturing research problems and a specific case was addressed by studying diamond machining of silicon carbide. While this is appreciable, there are a lot of challenges and opportunities in this fertile area. For example, the world of MD simulations is dependent on present day computers and the accuracy and reliability of potential energy functions [109]. This presents a limitation: Real-world scale simulation models are yet to be developed. The simulated length and timescales are far shorter than the experimental ones which couples further with the fact that contact loading simulations are typically done in the speed range of a few hundreds of m/sec against the experimental speed of typically about 1 m/sec [17]. Consequently, MD simulations suffer from the spurious effects of high cutting speeds and the accuracy of the simulation results has yet to be fully explored. The development of user-friendly software could help facilitate molecular dynamics as an integral part of computer-aided design and manufacturing to tackle a range of machining problems from all perspectives, including materials science (phase of the material formed due to the sub-surface deformation layer), electronics and optics (properties of the finished machined surface due to the metallurgical transformation in comparison to the bulk material), and mechanical engineering (extent of residual stresses in the machined component) [110]. Overall, this chapter provided key information concerning diamond machining of SiC which is classed as hard, brittle material. From the analysis presented in the earlier sections, MD simulation has helped in understanding the effects of crystal anisotropy in nanometric cutting of 3C-SiC by revealing the atomic-level deformation mechanisms for different crystal orientations and cutting directions. In addition to this, the MD simulation revealed that the material removal mechanism on the (111) surface of 3C-SiC (akin to diamond) is dominated by cleavage. These understandings led to the development of a new approach named the “surface defect machining” method which has the potential to be more effective to implement than ductile mode micro laser assisted machining or conventional nanometric cutting.
Resumo:
Plans to employ tungsten in the divertor region of the International Thermonuclear Experimental Reactor require radiative and collisional data for modelling x-ray emissions of highly ionized stages of tungsten. In an earlier paper, we reported on the results of fully relativistic R -matrix calculations for W 46+ that included the effects of radiation damping on the resonance contributions. In this paper, we present the results of similar fully relativistic, radiatively damped R -matrix calculations for W 44+ and W 45+ . Radiation damping is found to be small for W 45+ , but is appreciable for many of the excitations from the ground and metastable levels of W 44+ . Rates from the present calculations will be combined with those from the calculations for W 46+ and employed for collisional-radiative modelling for these ions.
Resumo:
The current design plans for the International Thermonuclear\nExperimental Reactor ( ITER) call for tungsten to be employed for\ncertain plasma facing components in the divertor region. Thus, accurate\natomic collision data are needed for emission modelling of tungsten.\nElectron-impact excitation and radiative rates are of particular\nimportance for Ni-like W, since this ion emits some of the most intense\nspectral lines of all ionization stages. We report on a fully\nrelativistic 115-level R-matrix calculations of W46+, which includes the\neffects of radiation damping. Although radiation damping is very\nimportant in most highly ionized species, its effects are reduced in\nthis case because of the closed-shell Ni-like ground state. The rates\nfrom these relativistic atomic calculations will be employed for\ncollisional-radiative modelling of this ion.
Resumo:
Over the last decade an Auburn-Rollins-Strathclyde consortium has developed several suites of parallel R-matrix codes [1, 2, 3] that can meet the fundamental data needs required for the interpretation of astrophysical observation and/or plasma experiments. Traditionally our collisional work on light fusion-related atoms has been focused towards spectroscopy and impurity transport for magnetically confined fusion devices. Our approach has been to provide a comprehensive data set for the excitation/ionization for every ion stage of a particular element. As we progress towards a burning fusion plasma, there is a demand for the collisional processes involving tungsten, which has required a revitalization of the relativistic R-matrix approach. The implementation of these codes on massively parallel supercomputers has facilitated the progression to models involving thousands of levels in the close-coupling expansion required by the open d and f sub-shell systems of mid Z tungsten. This work also complements the electron-impact excitation of Fe-Peak elements required by astrophysics, in particular the near neutral species, which offer similar atomic structure challenges. Although electron-impact excitation work is our primary focus in terms of fusion application, the single photon photoionisation codes are also being developed in tandem, and benefit greatly from this ongoing work.
Resumo:
Accurate data for dielectronic recombination (DR) of the ions of tungsten are of significant interest in the modelling of tungsten impurity transport and radiative power loss in current tokamaks and in ITER. However, the complexity of the atomic structure for many of these ions makes level-resolved DR calculations untenable on currently available computers, especially for open d- and f-subshell ions. The majority of DR data presently available for ITER modelling are based on an average-atom approximation. To improve upon these baseline calculations, we investigate the use of the configuration-average distorted-wave (CADW) method to calculate DR rate coefficients for complex open d-shell systems. The aim is to produce rate coefficients that are sufficiently accurate in terms of modelling, yet greatly reduced in term of computational complexity compared to level-resolved calculations. In this paper, we consider the DR of W 35 + . Initially, we carry out several large-scale level-resolved calculations for the DR associated with the 4d → 4f and 4p → 4d excitations in this ion, using both the level-resolved distorted-wave and Dirac R -matrix methods. These calculations allow us to test the validity of the CADW approach on these same excitations by comparing cross sections and rate coefficients. These comparisons demonstrate that the CADW method is relatively accurate in relation to these level-resolved methods for the temperature range for which W 35 + should exist in a collisionally ionized plasma. We then present results for CADW rate coefficients for both Δ n = 0 and Δ n = 1 excitations for this ion. This study indicates that it is now feasible to generate a much improved comprehensive set of DR data for the entire tungsten isonuclear sequence.
Resumo:
With the focus of ITER on the transport and emission properties of tungsten, generating atomic data for complex species has received much interest. Focusing on impurity influx diagnostics, we discuss recent work on heavy species. Perturbative approaches do not work well for near neutral systems so non-perturbative data are required, presenting a particular challenge for these influx diagnostics. Recent results on Mo+ are given as an illustration of how the diagnostic applications can guide the theoretical calculations for such systems.