973 resultados para Tucuruí Reservoir


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Until recently, the low-abundance (LA) range of the serum proteome was an unexplored reservoir of diagnostic information. Today it is increasingly appreciated that a diagnostic goldmine of LA biomarkers resides in the blood stream in complexed association with more abundant higher molecular weight carrier proteins such as albumin and immunoglobulins. As we now look to the possibility of harvesting these LA biomarkers more efficiently through engineered nano-scale particles, mathematical approaches are needed in order to reveal the mechanisms by which blood carrier proteins act as molecular 'mops' for LA diagnostic cargo, and the functional relationships between bound LA biomarker concentrations and other variables of interest such as biomarker intravasation and clearance rates and protein half-lives in the bloodstream. Here we show, by simple mathematical modeling, how the relative abundance of large carrier proteins and their longer half-lives in the bloodstream work together to amplify the total blood concentration of these tiny biomarkers. The analysis further suggests that alterations in the production of biomarkers lead to gradual rather than immediate changes in biomarker levels in the blood circulation. The model analysis also points to the characteristics of artificial nano-particles that would render them more efficient harvesters of tumor biomarkers in the circulation, opening up possibilities for the early detection of curable disease, rather than simply better detection of advanced disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerical simulation of a geothermal reservoir, modelled as a bottom-heated square box, filled with water-CO2 mixture is presented in this work. Furthermore, results for two limiting cases of a reservoir filled with either pure water or CO2 are presented. Effects of different parameters including CO2 concentration as well as reservoir pressure and temperature on the overall performance of the system are investigated. It has been noted that, with a fixed reservoir pressure and temperature, any increase in CO2concentration leads to better performance, i.e. stronger convection and higher heat transfer rates. With a fixed CO2 concentration, however, the reservoir pressure and temperature can significantly affect the overall heat transfer and flow rate from the reservoir. Details of such variations are documented and discussed in the present paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Steady state entanglement in ensembles of harmonic oscillators with a common squeezed reservoir is studied. Under certain conditions the ensemble features genuine multipartite entanglement in the steady state. Several analytic results regarding the bipartite and multipartite entanglement properties of the system are derived. We also discuss a possible experimental implementation which may exhibit steady state genuine multipartite entanglement.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Many countries are scaling up malaria interventions towards elimination. This transition changes demands on malaria diagnostics from diagnosing ill patients to detecting parasites in all carriers including asymptomatic infections and infections with low parasite densities. Detection methods suitable to local malaria epidemiology must be selected prior to transitioning a malaria control programme to elimination. A baseline malaria survey conducted in Temotu Province, Solomon Islands in late 2008, as the first step in a provincial malaria elimination programme, provided malaria epidemiology data and an opportunity to assess how well different diagnostic methods performed in this setting. Methods During the survey, 9,491 blood samples were collected and examined by microscopy for Plasmodium species and density, with a subset also examined by polymerase chain reaction (PCR) and rapid diagnostic tests (RDTs). The performances of these diagnostic methods were compared. Results A total of 256 samples were positive by microscopy, giving a point prevalence of 2.7%. The species distribution was 17.5% Plasmodium falciparum and 82.4% Plasmodium vivax. In this low transmission setting, only 17.8% of the P. falciparum and 2.9% of P. vivax infected subjects were febrile (≥38°C) at the time of the survey. A significant proportion of infections detected by microscopy, 40% and 65.6% for P. falciparum and P. vivax respectively, had parasite density below 100/μL. There was an age correlation for the proportion of parasite density below 100/μL for P. vivax infections, but not for P. falciparum infections. PCR detected substantially more infections than microscopy (point prevalence of 8.71%), indicating a large number of subjects had sub-microscopic parasitemia. The concordance between PCR and microscopy in detecting single species was greater for P. vivax (135/162) compared to P. falciparum (36/118). The malaria RDT detected the 12 microscopy and PCR positive P. falciparum, but failed to detect 12/13 microscopy and PCR positive P. vivax infections. Conclusion Asymptomatic malaria infections and infections with low and sub-microscopic parasite densities are highly prevalent in Temotu province where malaria transmission is low. This presents a challenge for elimination since the large proportion of the parasite reservoir will not be detected by standard active and passive case detection. Therefore effective mass screening and treatment campaigns will most likely need more sensitive assays such as a field deployable molecular based assay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host–pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enterohaemorrhagic Escherichia coli (EHEC) are a subgroup of Shiga toxin-producing E. coli that cause gastrointestinal disease with the potential for life-threatening sequelae. Cattle serve as the natural reservoir for EHEC and outbreaks occur sporadically as a result of contaminated beef and other farming products. While certain EHEC virulence mechanisms have been extensively studied, the factors that mediate host colonization are poorly defined. Previously, we identified four proteins (EhaA,B,C,D) from the prototypic EHEC strain EDL933 that belong to the autotransporter (AT) family. Here we characterize the EhaB AT protein. EhaB was shown to be located at the cell surface and overexpression in E. coli K-12 resulted in significant biofilm formation under continuous flow conditions. Overexpression of EhaB in E. coli K12 and EDL933 backgrounds also promoted adhesion to the extracellular matrix proteins collagen I and laminin. An EhaB-specific antibody revealed that EhaB is expressed in E. coli EDL933 following in vitro growth. EhaB also cross-reacted with serum IgA from cattle challenged with E. coli O157:H7, indicating that EhaB is expressed in vivo and elicits a host IgA immune response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose To examine the influence of short-term miniscleral contact lens wear on corneal shape, thickness and anterior surface aberrations. Methods Scheimpflug imaging was captured before, immediately following and 3 hours after a short period (3 hours) of miniscleral contact lens wear for 10 young (mean 27 ± 5 years), healthy participants. Natural diurnal variations were considered by measuring baseline diurnal changes obtained on a separate control day without contact lens wear. Results Small but significant anterior corneal flattening was observed immediately following lens removal (overall mean 0.02 ± 0.03 mm, p < 0.001) which returned to baseline levels three hours after lens removal. During the three hour recovery period significant corneal thinning (-13.4 ± 10.5 μm) and posterior surface flattening (0.03 ± 0.02 mm) were also observed (both p < 0.01). The magnitude of posterior corneal flattening during recovery correlated with the amount of corneal thinning (r = 0.69, p = 0.03). Central corneal clearance (maximum tear reservoir depth) was not associated with corneal swelling following lens removal (r = -0.24, p > 0.05). An increase in lower-order corneal astigmatism Z(2,2) was also observed following lens wear (mean -0.144 ± 0.075 μm, p = 0.02). Conclusions Flattening of the anterior corneal surface was observed immediately following lens wear, while ‘rebound’ thinning and flattening of the posterior surface was evident following the recovery period. Modern miniscleral contact lenses that vault the cornea may slightly influence corneal shape and power but do not induce clinically significant corneal oedema during short-term wear.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we have compiled and reviewed the most recent literature, published from January2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. Due to the large volume of literature included, we have provided full detail of the reviewed studies as Electronic Supplementary Information and here summarise the most relevant findings. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in Arctic polar bears and some birds at high trophic levels in northern Europe. This is a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance o f this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a rigorous validation of the analyticalAmadei solution for the stress concentration around arbitrarily orientated borehole in general anisotropic elastic media. First, we revisit the theoretical framework of the Amadei solution and present analytical insights that show that the solution does indeed contain all special cases of symmetry, contrary to previous understanding, provided that the reduced strain coefficients β11 and β55 are not equal. It is shown from theoretical considerations and published experimental data that the β11 and β55 are not equal for realistic rocks. Second, we develop a 3D finite-element elastic model within a hybrid analyticalnumerical workflow that circumvents the need to rebuild and remesh the model for every borehole and material orientation. Third, we show that the borehole stresses computed from the numerical model and the analytical solution match almost perfectly for different borehole orientations (vertical, deviated and horizontal) and for several cases involving isotropic and transverse isotropic symmetries. It is concluded that the analytical Amadei solution is valid with no restrictions on the borehole orientation or elastic anisotropy symmetry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new theoretical approach for the design of new strategies to utilize, enhance and maintain the natural permeability in the deeper and hotter domain of geothermal reservoirs. The advantage of the approach is that, rather than engineering an entirely new EGS reservoir, we acknowledge a suite of creep-assisted geological processes that are driven by the current tectonic stress field. Such processes are particularly supported by higher temperatures potentially allowing in the future to target commercially viable combinations of temperatures and flow rates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique, localised bubbling zones on the water storage were found to produce over 50,000 mg m-2 d-1 and the areal extent ranged from 1.8 to 7% of the total reservoir area. The drivers behind these changes as well as lessons learnt from the system implementation are presented. This system exploits relatively cheap materials, sensing and computing and can be applied to a wide variety of aquatic and terrestrial systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 12.7-10.5 Ma Cougar Point Tuff in southern Idaho, USA, consists of 10 large-volume (>10²-10³ km³ each), high-temperature (800-1000 °C), rhyolitic ash-flow tuffs erupted from the Bruneau-Jarbidge volcanic center of the Yellowstone hotspot. These tuffs provide evidence for compositional and thermal zonation in pre-eruptive rhyolite magma, and suggest the presence of a long-lived reservoir that was tapped by numerous large explosive eruptions. Pyroxene compositions exhibit discrete compositional modes with respect to Fe and Mg that define a linear spectrum punctuated by conspicuous gaps. Airfall glass compositions also cluster into modes, and the presence of multiple modes indicates tapping of different magma volumes during early phases of eruption. Equilibrium assemblages of pigeonite and augite are used to reconstruct compositional and thermal gradients in the pre-eruptive reservoir. The recurrence of identical compositional modes and of mineral pairs equilibrated at high temperatures in successive eruptive units is consistent with the persistence of their respective liquids in the magma reservoir. Recurrence intervals of identical modes range from 0.3 to 0.9 Myr and suggest possible magma residence times of similar duration. Eruption ages, magma temperatures, Nd isotopes, and pyroxene and glass compositions are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned and composed of multiple discrete magma volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a combination of multivariate statistical techniques and the graphical assessment of major ion ratios, the influences on hydrochemical variability of coal seam gas (or coal bed methane) groundwaters from several sites in the Surat and Clarence-Moreton basins in Queensland, Australia, were investigated. Several characteristic relationships between major ions were observed: 1) strong positive linear correlation between the Na/Cl and alkalinity/Cl ratios; 2) an exponentially decaying trend between the Na/Cl and Na/alkalinity ratios; 3) inverse linear relationships between increasing chloride concentrations and decreasing pH for high salinity groundwaters, and; 4) high residual alkalinity for lower salinity waters, and an inverse relationship between decreasing residual alkalinity and increasing chloride concentrations for more saline waters. The interpretation of the hydrochemical data provides invaluable insights into the hydrochemical evolution of coal seam gas (CSG) groundwaters that considers both the source of major ions in coals and the influence of microbial activity. Elevated chloride and sodium concentrations in more saline groundwaters appear to be influenced by organic-bound chlorine held in the coal matrix; a sodium and chloride ion source that has largely been neglected in previous CSG groundwater studies. However, contrastingly high concentrations of bicarbonate in low salinity waters could not be explained, and are possibly associated with a number of different factors such as coal degradation, methanogenic processes, the evolution of high-bicarbonate NaHCO3 water types earlier on in the evolutionary pathway, and variability in gas reservoir characteristics. Using recently published data for CSG groundwaters in different basins, the characteristic major ion relationships identified for new data presented in this study were also observed in other CSG groundwaters from Australia, as well as for those in the Illinois Basin in the USA. This observation suggests that where coal maceral content and the dominant methanogenic pathway are similar, and where organic-bound chlorine is relatively abundant, distinct hydrochemical responses may be observed. Comparisons with published data of other NaHCO3 water types in non-CSG environments suggest that these characteristic major ion relationships described here can: i) serve as an indicator of potential CSG groundwaters in certain coal-bearing aquifers that contain methane; and ii) help in the development of strategic sampling programmes for CSG exploration and to monitor potential impacts of CSG activities on groundwater resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.