991 resultados para Transient complexes
Resumo:
In this work we report the structural characteristics of bovine serum albumin/poly(ethylene glycol) lipid conjugate (BSA/PEG(2000)-PE) complexes under physiological conditions (37 degrees C and pH 7.4) for particular fractions of BSA to PEG-lipid concentration, CBSA/C-PEG2000-PE. Ultraviolet fluorescence spectroscopy (UV) results shown that PEG(2000)-PE is associated to BSA, leading to;protein unfolding for fixed C-BSA = 0.01 wt % and variable C-PEG2000-PE = 0.0015-0.6 wt %. Tryptophan groups on the BSA surface are in contact with the PEG-lipid at C-PEG2000-PE = 0.0015 wt %, while they are exposed to water at C-PEG2000-PE (>)0.0015 wt %. Dynamic and static light scattering (DLS and SLS) and small-angle neutron scattering (SANS) point out the existence of individual BSAIPEG-lipid complexes in the system for fixed C-BSA = 1 wt % and variable C-PEG2000-PE = 0.15-2 wt %. DLS shows that there is only one BSA molecule per protein/PEG-lipid complex, while SLS shows that the PEG-lipid associates to the BSA without promoting aggregation between adjacent protein/ polymer-lipid conjugate complexes. SANS was used to show that BSA/PEG(2000)-PE complexes adopt an oblate ellipsoidal shape. Partially unfolded BSA is contained in the core of the oblate ellipsoid, which is surrounded by an external shell containing the PEG(2000)-PE.
Resumo:
Extended-chain complexes containing multiple transition metal centres linked by conjugated mu-cyanodiazenido(1-) ligands [N= N-C N]-have been obtained by reaction of trans-[BrW(dppe)(2)(N2CN)], 1, [dppe = 1,2-bis(diphenylphosphino) ethane] with dirhodium(II) tetra-acetate, bis(benzonitrile) palladium(II) dichloride, and bis(aqua) M(II) bis(hexa. uoroacetylacetonate) (M = Mn, Ni, Cu, Zn): stronger Lewis acids such as tetrakis(acetonitrile) palladium(II) tetra. uoroborate and boron trifl. uoride promote hydrolysis of complex 1, leading to the isolation of a novel carbamoylhydrazido(2-) complex, trans-[BrW(dppe) 2(N2HC=ONH2)](+)[BF4](-).
Resumo:
Blue [{Cu(2,2'-bipy)(2)}(2){alpha-SiW12O40}] (bipy = bipyridyl) (1) and pale yellow [Mn(2,2'-bipy)(3)](2)[alpha-SiW12O40] (2) have been synthesized hydrothermally and characterized by IR spectroscopy and single crystal X-ray structure analysis. In 1, the [alpha-SiW12O40](4-) ion acts as a bridge between the two [{Cu(2,2'-bipy)(2)](2+) moieties via coordination through the terminal oxygen atoms, while in 2, the [Mn(2,2'-bipy)(3)](2+) ion balances the charge on the polyoxo anion without forming any covalent bond. To the best of our knowledge, this is the first example of transition metal-mediated transformation of [alpha-SiW9O34](10-) to [alpha-SiW12O40](4-).
Resumo:
Two sets of ligands, set-1 and set-2, have been prepared by mixing 1,3-diaminopentane and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively, and employed for the synthesis of complexes with Ni(II) perchlorate, Ni(II) thiocyanate and Ni(II) chloride. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2)(L = L-1 [N-3-(1-pyridin-2-yl-ethylidene)-pentane-1,3-diamine] for complex 1 or L-2[N-3-pyridin-2-ylmethylene-pentane-1,3-diamine] for complex 2) in which the Schiff bases are monocondensed terdentate, whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL(SCN)(2)] (L = L-3[N,N'-bis-(1-pyridin-2- yl-ethylidine)-pentane-1,3-diamine] for complex 3 or L-4 [N,N'-bis(pyridin-2-ylmethyline)-pentane-1,3- diamine] for complex 4) irrespective of the sets of ligands used. Complexes 5 {[NiL3(N-3)(2)]} and 6 {[NiL4(N-3)(2)]} are prepared by adding sodium azide to the methanol solution of complexes 1 and 2. Addition of Ni(II) chloride to the set-1 or set-2 ligands produces [Ni(pn)(2)]Cl-2, 7, as the major product, where pn = 1,3-diaminopentane. Formation of the complexes has been explained by the activation of the imine bond by the counter anion and thereby favouring the hydrolysis of the Schiff base. All the complexes have been characterized by elemental analyses and spectral data. Single crystal X-ray diffraction studies con. firm the structures of three representative members, 1, 4 and 7; all of them have distorted octahedral geometry around Ni(II). The bis-complex of terdentate ligands, 1, is the mer isomer, and complexes 4 and 7 possess trans geometry. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
A new mononuclear Cu(II) complex, [CuL(ClO4)(2)] (1) has been derived from symmetrical tetradentate di-Schiff base, N,N'-bis-(1-pyridin-2-yl-ethylidene)-propane-1,3-diamine (L) and characterized by X-ray crystallography. The copper atom assumes a tetragonally distorted octahedral geometry with two perchlorate oxygens coordinated very weakly in the axial positions. Reactions of I with sodium azide, ammonium thiocyanate or sodium nitrite solution yielded compounds [CuL(N-3)]ClO4 (2), [CuL(SCN)ClO4 (3) or [CuL(NO2)]-ClO4 (4), respectively, all of which have been characterized by X-ray analysis. The geometries of the penta-coordinated copper(H) in complexes 2-4 are intermediate between square pyramid and trigonal bipyramid (tbp) having the Addition parameters (tau) 0.47, 0.45 and 0.58, respectively. In complex 4, the nitrite ion is coordinated as a chelating ligand and essentially both the 0 atoms of the nitrite occupy one axial site. Complex 1 shows distinct preference for the anion in the order SCN- > N-3(-) > NO2- in forming the complexes 24 when treated with a SCN-/N-3(-)/NO2- mixture. Electrochemical electron transfer study reveals (CuCuI)-Cu-II reduction in acetonitrile solution. (c) 2006 Elsevier B.V.. All rights reserved.
Resumo:
Two sets of Schiff base ligands, set-1 and set-2 have been prepared by mixing the respective diamine (1,2-propanediamine or 1,3-propanediamine) and carbonyl compounds (2-acetylpyridine or pyridine-2-carboxaldehyde) in 1:1 and 1:2 ratios, respectively and employed for the synthesis of complexes with Ni(II) perchlorate and Ni(II) thiocyanate. Ni(II) perchlorate yields the complexes having general formula [NiL2](ClO4)(2) (L = L-1 [N-1-(1-pyridin-2-yl-ethylidine)-propane-1,3-diamine] for complex 1, L-2 [N-1-pyridine-2-ylmethylene-propane1,3-diamine] for complex 2 or L-3 [N-1-(1-pyridine-2-yl-ethylidine)-propane-1,2-diamine] for complex 3) in which the Schiff bases are mono-condensed terdentate whereas Ni(II) thiocyanate results in the formation of tetradentate Schiff base complexes, [NiL](SCN)(2) (L=L-4 [N,N'-bis-(1-pyridine-2-yl-ethylidine)-propane-1,3-diamine] for complex 4, L-5 [NN'-bis(pyridine-2-ylmethyline)-propane-1, 3-diamine] for complex 5 or L-6 [NN'-bis-(1-pyridine-2-yl-ethylidine)-propane- 1, 2-diamine] for complex 6) irrespective of the sets of ligands used. Formation of the complexes has been explained by anion modulation of cation templating effect. All the complexes have been characterized by elemental analyses, spectral and electrochemical results. Single crystal X-ray diffraction studies confirm the structures of four representative members, 1, 3, 4 and 5; all of them have distorted octahedral geometry around Ni(II). The bis-complexes of terdentate ligands, I and 3 are the mer isomers and the complexes of tetradentate ligands, 4 and 5 possess trans geometry. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Two linear, trinuclear mixed-valence complexes, [Co-II{(mu-L-1)(mu-OAc)Co-III (OAc)}(2)] (1) and [Co-II(mu-L-2) (mu-OAc)Co-III(OAc)}(2)] (2) and two mononuclear Con' complexes [Co-III{L-3)(OAc)] (3), and [Co-III {L-4}(OAc)] (4) were prepared and the molecular structures of 1, 2 and 4 elucidated on the basis of X-ray crystallography [OAc = Acetate ion, H2L1 = H(2)Salen 1,6-bis(2-hydroxyphenyl)-2,5-diazahexa-1,5-diene, H2L2 H2Me2-Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene, H2L3 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta1,6-diene, H2L4 = H(2)Me(2)Salpn = 2,8-bis(2-hydroxyphenyl)3,7-diazanona-2,7-dienel. In complexes I and 2, the acetate groups show both monodentate and bridging bidentate coordination modes, whereas chelating bidentate acetate is present in 4. The terminal (CoN2O4)-N-III centres in 1 and 2 exhibit uniform facial arrangements of both non-bridged N2O and bridging O-3 donor sets and the Co-II centre is coordinated to six (four phenoxo and two acetato) oxygen atoms of the bridging ligands. The effective magnetic moment at room temperature corresponds to the presence of high-spin Coll in both 1 and 2. The complexes 1 and 2 are thus Co-III(S = 0)Co-II(S = 3/2)-Co-II(S = 0) trimers. Complexes 3 and 4 are monomeric and diamagnetic containing low-spin Co-III(S = 0) with chelating tetradentate Schiff base and bidentate acetate. Calculations based on DFT rationalise the formation of trinuclear or monomiclear complexes. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
Four new copper(II) complexes, [((CuLN3)-N-1)(2)](ClO4)(2) (1), [(CuL2 N-3)(2)](ClO4)(2) (2), [CuL3(N-3)ClO4)](n) (3) and [CuL4(mu-1,1-N-3)(mu-1,3-N-3)(ClO4)](n) (4) where L-1 = N-1-pyridin-2-yl-methylene-propane-1,3-diamine, L-2 = N-1-(1-pyridin-2-yl-ethylidene)propane-1,3-diamine, L-3 =N-1-(1-pyridin-2-yl-ethylidene)ethane-1,2-diamine and L-4=N-1-(1-pyridin-2-yl-ethylidene)propane-1,2-diamine are four tridentate N,N,N donor Schiff base ligands, have been derived and structurally characterized by X-ray crystallography. Compounds 1 and 2 consist of double basal-apical end-on (EO) azide bridged dinuclear Cu-II complexes with square-pyramidal geometry. In complex 3 the square planar mononuclear [CuL3 (N-3)] units are linked by weakly coordinated perchlorate ions in the axial positions of Cu-II to form a one-dimensional chain. Two such chains are connected by hydrogen bonds involving perchlorate ions and azide groups. Compound 4 consists of 1-D chains in which the Cu-II ions with a square-pyramidal geometry are alternately bridged by single EO and end-to-end (EE) azido ligands, both adopting a basal-apical disposition. Variable temperature (300-2 K) magnetic susceptibility measurements and magnetization measurements at 2 K have been performed. The results reveal that complexes 1 and 2 are antiferromagnetically coupled through azido bridges (J= -12.18 +/- 0.09 and -4.43 +/- 0.1 cm(-1) for 1 and 2, respectively). Complex 3 shows two different magnetic interactions through the two kinds of hydrogen bonds; one is antiferromagnetic (J(1) = - 9.69 +/- 0.03 cm(-1)) and the other is ferromagnetic (J(2) = 1.00 +/- 0.01 cm(-1)). From a magnetic point of view complex 4 is a ferromagnetic dinuclear complex (J= 1.91 +/- 0.01 cm(-1)) coupled through the EO bridge only. The coupling through the EE bridge is practically nil as the N(azido)-Cu-II (axial) distance (2.643 angstrom) is too long. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The compounds Ag(CN)(NH3) and Ag(Br)(NH3) are remarkable in that they form solids containing the simple molecular units NC-Ag-NH3 and Br-Ag-NH3, rather than extended solids, and are the first examples of simple linear asymmetric complexes of silver(I).
Resumo:
Cyclo-condensation of aroyl hydrazides with the cationic tungsten-dichlorodiazomethane complex [BrW(dppe)(2)(N2CCI2)](+) affords neutral oxadiazolyldiazenido(1-) complexes which react readily with a wide range of transition and non-transition metal species to afford a novel series of crystallographically-characterised heteropolynuclear complexes containing bridging oxadiazolyldiazenido(1-) ligands.
Resumo:
Spontaneous ring-opening polymerization of macrocyclic aromatic thioether ketones [-1,4-SC6H4CO-C6H4-](n) (n = 3 and 4), in which the thioether linkages are para to the ketone, occurs during rapid, transient heating to 480degreesC, to afford a soluble, semi-crystalline poly(thioether ketone) of high molar mass (eta(inh) > 1.0 dL . g(-1)). Corresponding macrocyclic ether ketone, and a macrocyclic thioether ether ketone in which the thioether linkage is para to the ether rather than to the ketone, show no evidence of polymerization under analogous conditions.
Resumo:
Two 28-membered octaazamacrocycles, [28]py(2)N(6) and Me-2[28]py(2)N(6), have been synthesized. The protonation constants of the N-methyl. derivative and the stability constants of its complexes with Ni2+, Cu2+, Zn2+, Cd2+, and Pb2+ were determined at 25degreesC in 0.10 mol dm(-3) KNO3. The high overall basicity of Me-2[28]py(2)N(6) is ascribed to the weaker repulsion between protonated contiguous charged ammonium sites separated by propyl chains. These studies together with NMR, UV-vis and EPR spectroscopies indicated the presence of mono- and di-nuclear species, The single crystal structure of the complex [Ni-2([28]py(2)N(6))(H2O)(4)]Cl-4.3H(2)O was determined, and showed each nickel centre in a distorted octahedral co-ordination environment. The nickel centres are held within the macrocycle at a large distance of 6.991(g) Angstrom from each other. The formation of mononuclear complexes was evaluated theoretically via molecular mechanics (MM) and molecular dynamics (MD) calculations and showed that these large macrocycles have sufficient flexibility to encapsulate metal ions with different stereo-electronic sizes. Structures for small and large metal ions are proposed.
Resumo:
The zinc and cadmium ethylxanthate complexes of N,N,N',N'-tetramethylethylenediamine (TMEDA), [M(S2COEt)(2)TMEDA], were synthesized and characterized with infrared, H-1 and C-13 NMR spectroscopy, mass spectrometry and X-ray crystallography. Whereas the cadmium complex has a six-coordinate {CdS4N2} centre with bidentate xanthate ligands, the zinc complex contains four coordinate {ZnS2N2} zinc with two monodentate xanthate groups. The cadmium species [Cd(S2COEt)(2)(diamine)] (where diamine = N,N-dimethylethylenediamine or N,N'-diisopropylethylenediamine) were also synthesized. The surfactant-assisted formation of nanoparticles from [Cd(S2COEt)(2)] and [Cd(S2COEt)(2)TMEDA] was studied with TEM, XRD and XRF techniques. From [Cd(S2COEt)(2)], spherical nanoparticle aggregates 140-200 nm in diameter were obtained but from [Cd(S2COEt)(2)TMEDA], single nanoparticles were produced with estimated diameters in the range of 4-7 nm and almost no aggregation. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Oxorhenium(V) complexes of beta-diketonate systems have been synthesized and isolated in pure form. The red complexes n-Bu4N[ReO(R1COCHCOR2)Cl-3] (acac, R-1=R-2=CH3; bzac, R-1=CH3 and R-2=C6H5; bzbz, R-1=R-2=C6H5) have been characterized by elemental analyses, spectroscopic and other physico-chemical tools. One complex, n-Bu4N[ReO(bzbz)Cl-3] (1c) has been subjected to single-crystal X-ray analysis. In the structure of the anion, the metal has a six-coordinate octahedral environment in which the bidentate -diketone ligand is cis and trans to the terminal oxygen.
Resumo:
Reaction of CuCl2 center dot 2H(2)O with the 1:1 condensate (L) of 2-(2-aminoethyl) pyridine and 1-methyl-2-imidazolecarboxaldehyde in methanol yields monomeric CuLCl2 center dot H2O (1). Recrystallisation of 1 from aqueous methanol medium containing excess of PF6- affords the 1D coordination polymer [CuLCl](n)(PF6)(n) (2). A chloride bridge results in the coordination polymer. A face-to-face interaction is observed between the imidazole rings in 2. The interaction influences the structure and magnetic properties of 2 markedly. The complex 2 is ferromagnetic with a J value of 1.79 +/- 0.01 cm (1). The imidazole fragments in 2 are coordinated to the metal. In mononuclear [HgL2 ''](ClO4)(2), where L '' is the 1:2 condensate of ethylenediamine and 1-methyl-2-imidazolecarboxaldehyde, the imidazolyl moieties are not under the direct influence of the metal. Here the imidazole-imidazole interaction is angular and more distant. (C) 2009 Elsevier B.V. All rights reserved.