991 resultados para Transferência lateral de genes
Resumo:
The Lateral Leg Spring model (LLS) was developed by Schmitt and Holmes to model the horizontal-plane dynamics of a running cockroach. The model captures several salient features of real insect locomotion, and demonstrates that horizontal plane locomotion can be passively stabilized by a well-tuned mechanical system, thus requiring minimal neural reflexes. We propose two enhancements to the LLS model. First, we derive the dynamical equations for a more flexible placement of the center of pressure (COP), which enables the model to capture the phase relationship between the body orientation and center-of-mass (COM) heading in a simpler manner than previously possible. Second, we propose a reduced LLS "plant model" and biologically inspired control law that enables the model to follow along a virtual wall, much like antenna-based wall following in cockroaches. © 2006 Springer.
Resumo:
This paper presents a comparison between the superjunction LIGBT and the LDMOSFET in partial silicon-on-insulator (PSOI) technology in 0.18μm PSOI HV process. The superjunction drift region helps in achieving uniform electric field distribution in both structures but also contributes to the on-state current in the LIGBT. The superjunction LIGBT successfully achieves breakdown voltage (BV) of 210V with Rdson of 765mΩ.mm2. It exhibits reduced specific on-state resistance Rdson and higher saturation current (Idsat) for the same BV compared to a compatible lateral superjunction LDMOS in the same technology. © 2012 IEEE.
Resumo:
This paper evaluates the technique used to improve the latching characteristics of the 200 V n-type superjunction (SJ) lateral insulated-gate bipolar transistor (LIGBT) on a partial silicon-on-insulator. SJ IGBT devices are more prone to latch-up than standard IGBTs due to the presence of a strong pnp transistor with the p layer serving as an effective collector of holes. The initial SJ LIGBT design latches at about 23 V with a gate voltage of 5 V with a forward voltage drop (VON) of 2 V at 300 Acm2. The latch-up current density is 1100 Acm2. The latest SJ LIGBT design shows an increase in latch-up voltage close to 100 V without a significant penalty in VON. The latest design shows a latch-up current density of 1195 A cm2. The enhanced robustness against static latch-up leads to a better forward bias safe operating area. © 1963-2012 IEEE.
Resumo:
There is increasing evidence for the involvement of lipid membranes in both the functional and pathological properties of α-synuclein (α-Syn). Despite many investigations to characterize the binding of α-Syn to membranes, there is still a lack of understanding of the binding mode linking the properties of lipid membranes to α-Syn insertion into these dynamic structures. Using a combination of an optical biosensing technique and in situ atomic force microscopy, we show that the binding strength of α-Syn is related to the specificity of the lipid environment (the lipid chemistry and steric properties within a bilayer structure) and to the ability of the membranes to accommodate and remodel upon the interaction of α-Syn with lipid membranes. We show that this interaction results in the insertion of α-Syn into the region of the headgroups, inducing a lateral expansion of lipid molecules that can progress to further bilayer remodeling, such as membrane thinning and expansion of lipids out of the membrane plane. We provide new insights into the affinity of α-Syn for lipid packing defects found in vesicles of high curvature and in planar membranes with cone-shaped lipids and suggest a comprehensive model of the interaction between α-Syn and lipid bilayers. The ability of α-Syn to sense lipid packing defects and to remodel membrane structure supports its proposed role in vesicle trafficking.
Resumo:
The two-dimensional heterostructure nanobelts with a central CdSe region and lateral CdS structures are synthesized by a two-step physical vapor transport method. The large growth rate difference between lateral CdS structures on both +/- (0001) sides of the CdSe region is found. The growth anisotropy is discussed in terms of the polar nature of the side +/- (0001) surfaces of CdSe. High-resolution transmission electron microscopy reveals the CdSe central region covered with non-uniform CdS layer/islands. From micro-photoluminescence measurements, a systematic blueshift of emission energy from the central CdSe region in accordance with the increase of lateral CdS growth temperature is observed. This result indicates that the intermixing rate in the CdSe region with CdS increases with the increase of lateral CdS growth temperature. In conventional CdSSe ternary nanostructures, morphology and emission wavelength were correlated parameters. However, the morphology and emission wavelength are independently controllable in the CdS/CdSe lateral heterostructure nanobelts. This structure is attractive for applications in visible optoelectronic devices.
Resumo:
Offshore wind has enormous worldwide potential to generate increasing amounts of clean, renewable energy. Monopile foundations are considered to be viable in supporting larger offshore wind turbines in shallow to medium depth waters. In this paper, the lateral and axial response of monopiles installed in undrained clays of varying shear strength and stiffness is investigated using three-dimensional finite element analysis. A combination of axial and lateral loads expected at an offshore wind farm located in a water depth of 30 m has been used in the analysis. Numerically derived monopile axial capacities will be compared to those calculated using an established method in the literature. In addition, the lateral monopile capacity will be determined at ultimate limit state and compared to that at the serviceability limit state. Through a parametric study, it will be shown that with the exception of extremely high axial loads that border on monopile axial capacities, variation in axial loads does not have a significant effect on the ultimate lateral capacity and lateral displacement of monopiles. © 2013 Indian Geotechnical Society.
Resumo:
Offshore wind capacity is expected to grow exponentially over the next decade resulting in the production of a considerable amount of renewable energy. Monopiles are currently the most popular type of foundation for supporting offshore wind turbines in shallow to medium depth waters. In this paper, the load-deformation response of a 3.8 m diameter monopile installed in soft clays when subjected to axial and lateral loading is investigated using centrifuge testing and soil pore-fluid coupled three-dimensional finite element analysis. Monopile deformation is principally assessed in terms of its lateral displacements and bending moments. Its behaviour as a short rigid pile is discussed using concepts such as its rotation at mudline and the pile depth at which pivoting occurs. © 2014 Taylor & Francis Group.
Resumo:
Monopiles supporting offshore wind turbines are subjected to cyclic lateral loading. The properties of the applied cyclic lateral load are known to have an effect on the accumulation of permanent displacement and rotation at the pile head. The results of centrifuge testing on model piles show that certain loading regimes lead to the development of locked in soil stresses around the pile. These locked in soil stresses change the stiffness of the monopile response to cyclic lateral loading and the natural frequency of the pile-soil system. © 2014 Taylor & Francis Group.
Resumo:
We investigated the molecular evolution of duplicated color vision genes (LWS-1 and SWS2) within cyprinid fish, focusing on the most cavefish-rich genus-Sinocyclocheilus. Maximum likelihood-based codon substitution approaches were used to analyze the evolution of vision genes. We found that the duplicated color vision genes had unequal evolutionary rates, which may lead to a related function divergence. Divergence of LWS-1 was strongly influenced by positive selection causing an accelerated rate of substitution in the proportion of pocket-forming residues. The SWS2 pigment experienced divergent selection between lineages, and no positively selected site was found. A duplicate copy of LWS-1 of some cyprinine species had become a pseudogene, but all SWS2 sequences remained intact in the regions examined in the cyprinid fishes examined in this study. The pseudogenization events did not occur randomly in the two copies of LWS-1 within Sinocyclocheilus species. Some cave species of Sinocyclocheilus with numerous morphological specializations that seem to be highly adapted for caves, retain both intact copies of color vision genes in their genome. We found some novel amino acid substitutions at key sites, which might represent interesting target sites for future mutagenesis experiments. Our data add to the increasing evidence that duplicate genes experience lower selective constraints and in some cases positive selection following gene duplication. Some of these observations are unexpected and may provide insights into the effect of caves on the evolution of color vision genes in fishes.
Resumo:
A series of strong earthquakes near Christchurch, New Zealand, occurred between September 2010 and December 2011, causing widespread liquefaction throughout the city's suburbs. Lateral spreading developed along the city's Avon River, damaging many of the bridges east of the city centre. The short-to medium-span bridges exhibited a similar pattern of deformation, involving back-rotation of their abutments and compression of their decks. By explicitly considering the rotational equilibrium of the abutments about their point of contact with the rigid bridge decks, it is shown that relatively small kinematic demands from the laterally spreading backfill soil are needed to initiate pile yielding, and that this mode of deformation should be taken into account in the design of the abutments and abutment piles.
Resumo:
In adaptation to new environments, organisms may accumulate mutations within encoding sequences to modify protein characteristics or acquire mutations within regulatory sequences to alter gene expression levels. With the development of antifreeze capability as the example, this study presents the evidence that change in gene expression level is probably the most important mechanism for adaptive evolution in a green alga Chlorella vulgaris. C. vulgaris NJ-7, an isolate from Antarctica, possesses an 18S rRNA sequence identical to that of a temperate isolate, SAG211-11b/UTEX259, but shows much higher freeze tolerance than the later isolate. The chromosomal DNA/cDNA of four antifreeze genes, namely hiC6, hiC12, rpl10a and hsp70, from the two isolates of C. vulgaris were cloned and sequenced, and very few variations of deduced amino acid sequences were found. In contrast, the transcription of hiC6, hiC12 and rpl10a was greatly intensified in NJ-7 compared to that in UTEX259, which is correlated to the significantly enhanced freeze tolerance of the Antarctica isolate. (C) 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.