958 resultados para Transcriptional coactivator
Resumo:
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.
Resumo:
The Egr proteins, Egr-1, Egr-2, Egr-3 and Egr-4, are closely related members of a subclass of immediate early gene-encoded, inducible transcription factors. They share a highly homologous DNA-binding domain which recognises an identical DNA response element. In addition, they have several less-well conserved structural features in common. As immediate early proteins, the Egr transcription factors are rapidly induced by diverse extracellular stimuli within the nervous system in a discretely controlled manner. The basal expression of the Egr proteins in the developing and adult rat brain and the induction of Egr proteins by neurotransmitter analogue stimulation, physiological mimetic and brain injury paradigms is reviewed. We review evidence indicating that Egr proteins are subject to tight differential control through diverse mechanisms at several levels of regulation. These include transcriptional, translational and posttranslational (including glycosylation, phosphorylation and redox) mechanisms and protein-protein interaction. Ultimately the differentially co-ordinated Egr response may lead to discrete effects on target gene expression. Some of the known target genes of Egr proteins and functions of the Egr proteins in different cell types are also highlighted. Future directions for research into the control and function of the different Egr proteins are also explored. (C) 1997 Elsevier Science Ltd.
Resumo:
The Down syndrome (DS) immune phenotype is characterized by thymus hypotrophy, higher propensity to organ-specific autoimmune disorders, and higher susceptibility to infections, among other features. Considering that AIRE (autoimmune regulator) is located on 21q22.3, we analyzed protein and gene expression in surgically removed thymuses from 14 DS patients with congenital heart defects, who were compared with 42 age-matched controls with heart anomaly as an isolated malformation. Immunohistochemistry revealed 70.48 +/- 49.59 AIRE-positive cells/mm(2) in DS versus 154.70 +/- 61.16 AIRE-positive cells/mm(2) in controls (p < 0.0001), and quantitative PCR as well as DNA microarray data confirmed those results. The number of FOXP3-positive cells/mm(2) was equivalent in both groups. Thymus transcriptome analysis showed 407 genes significantly hypoexpressed in DS, most of which were related, according to network transcriptional analysis (FunNet), to cell division and to immunity. Immune response-related genes included those involved in 1) Ag processing and presentation (HLA-DQB1, HLA-DRB3, CD1A, CD1B, CD1C, ERAP) and 2) thymic T cell differentiation (IL2RG, RAG2, CD3D, CD3E, PRDX2, CDK6) and selection (SH2D1A, CD74). It is noteworthy that relevant AIRE-partner genes, such as TOP2A, LAMNB1, and NUP93, were found hypoexpressed in DNA microarrays and quantitative real-time PCR analyses. These findings on global thymic hypofunction in DS revealed molecular mechanisms underlying DS immune phenotype and strongly suggest that DS immune abnormalities are present since early development, rather than being a consequence of precocious aging, as widely hypothesized. Thus, DS should be considered as a non-monogenic primary immunodeficiency. The Journal of Immunology, 2011, 187: 3422-3430.
Resumo:
Cutaneous asthenia is a hereditary connective tissue disease, primarily of dogs and cats, resembling Ehlers-Danlos syndrome in man. Collagen dysplasia results in skin hyperextensibility, skin and vessel fragility, and poor wound healing. The purpose of this study was to describe the histological findings in a dog with a collagenopathy consistent with cutaneous asthenia. An 8-month-old crossbreed female dog presented with lacerations and numerous atrophic and irregular scars. The skin was hyperextensible and easily torn by the slightest trauma. Ultrastructurally, the dermis was comprised of elaunin and oxytalan microfibrils. These are immature fibres in which the fibrillar component is increased but elastin is reduced. Collagen fibres were profoundly disorganized. The fibrils had a highly irregular outline and a corroded appearance when viewed in cross-section, and were spiralled and fragmented in a longitudinal view. Dermal fibroblasts displayed a conspicuous thickening of the nuclear lamina. Nuclear lamins form a fibrous nucleoskeletal network of intermediate-sized filaments underlying the inner nuclear membrane. Mutations in lamins or lamin-associated proteins cause a myriad of genetic diseases collectively called laminopathies. Disruption of the nuclear lamina seems to affect chromatin organization and transcriptional regulation of gene expression. A common link among all laminopathies may be a failure of stem cells to regenerate mesenchymal tissue. This could contribute to the connective tissue dysplasia seen in cutaneous asthenia.
Resumo:
BACKGROUND The genetic analysis of human primary immunodeficiencies has defined the contribution of specific cell populations and molecular pathways in the host defense against infection. Disseminated infection caused by bacille Calmette-Guerin (BCG) vaccines is an early manifestation of primary immunodeficiencies, such as severe combined immunodeficiency. In many affected persons, the cause of disseminated BCG disease is unexplained. METHODS We evaluated an infant presenting with features of severe immunodeficiency, including early-onset disseminated BCG disease, who required hematopoietic stem-cell transplantation. We also studied two otherwise healthy subjects with a history of disseminated but curable BCG disease in childhood. We characterized the monocyte and dendritic-cell compartments in these three subjects and sequenced candidate genes in which mutations could plausibly confer susceptibility to BCG disease. RESULTS We detected two distinct disease-causing mutations affecting interferon regulatory factor 8 (IRF8). Both K108E and T80A mutations impair IRF8 transcriptional activity by disrupting the interaction between IRF8 and DNA. The K108E variant was associated with an autosomal recessive severe immunodeficiency with a complete lack of circulating monocytes and dendritic cells. The T80A variant was associated with an autosomal dominant, milder immunodeficiency and a selective depletion of CD11c+CD1c+ circulating dendritic cells. CONCLUSIONS These findings define a class of human primary immunodeficiencies that affect the differentiation of mononuclear phagocytes. They also show that human IRF8 is critical for the development of monocytes and dendritic cells and for antimycobacterial immunity. (Funded by the Medical Research Council and others.)
Resumo:
Angiotensin II (Ang II) and vascular endothelial growth factor (VEGF) are important mediators of kidney injury in diabetes. Acute hyperglycemia increased synthesis of intrarenal Ang I and Ang II and resulted in activation of both Ang II receptors, AT1 and AT2, in the kidney. Losartan (specific AT1 antagonist) or PD123319 (specific AT2 antagonist) did not affect hyperglycemia but prevented activation of renal AT1 and AT2, respectively. In murine renal cortex, acute hyperglycemia increased VEGF protein but not mRNA content after 24 h, which suggested translational regulation. Blockade of AT2, but not AT1, prevented increase in VEGF synthesis by inhibiting translation of VEGF mRNA in renal cortex. Acute hyperglycemia increased VEGF expression in wild type but not in AT2 knockout mice. Binding of heterogeneous nuclear ribonucleoprotein K to VEGF mRNA, which stimulates its translation, was prevented by blockade of AT2, but not AT1. The Akt-mTOR-p70(S6K) signaling pathway, involved in the activation of mRNA translation, was activated in hyperglycemic kidneys and was blocked by the AT2 antagonist. Elongation phase is an important step of mRNA translation that is controlled by elongation factor 1A (eEF1A) and 2 (eEF2). Expression of eEF1A and activity of eEF2 was higher in kidney cortex from hyperglycemic mice and only the AT2 antagonist prevented these changes. To assess selectivity of translational control of VEGF expression, we measured expression of fibronectin (FN) and laminin beta 1 (lam beta 1): acute hyperglycemia increased FN expression at both protein and mRNA levels, indicating transcriptional control, and did not affect the expression of lam beta 1. To confirm results obtained with PD123319, we induced hyperglycemia in AT2 knockout mice and found that in the absence of AT2, translational control of VEGF expression by hyperglycemia was abolished. Our data show that acute hyperglycemia stimulates Ang II synthesis in murine kidney cortex, this leads to AT2 activation and stimulation of VEGF mRNA translation, via the Akt-mTOR-p70(S6K) signaling pathway. Our data show that exclusive translational control of protein expression in the kidney by acute hyperglycemia is not a general phenomenon, but do not prove that it is restricted to VEGF. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.
Resumo:
Mechanisms regulating NADPH oxidase remain open and include the redox chaperone protein disulfide isomerase (PDI). Here, we further investigated PDI effects on vascular NADPH oxidase. VSMC transfected with wild-type PDI (wt-PDI) OF PDI mutated in all four redox cysteines (mut-PDI) enhanced (2.5-fold) basal cellular ROS production and membrane NADPH oxidase activity, with 3-fold increase in Nox1, but not Nox4 mRNA. However, further ROS production, NADPH oxidase activity and Nox1 mRNA increase triggered by angiotensin-II (AngII) were totally lost with PDI overexpression, suggesting preemptive Nox1 activation in such cells. PDI overexpression increased Nox4 mRNA after AngII stimulus, although without parallel ROS increase. We also show that Nox inhibition by the nitric oxide donor GSNO is independent of PDI. PDI silencing decreased specifically Nox1 mRNA and protein, confirming that PDI may regulate Nox1 at transcriptional level in VSMC. Such data further strengthen the role of PDI as novel NADPH oxidase regulator. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
P>Background The evolution and therapeutic outcome of American tegumentary leishmaniasis (ATL) depend upon many factors, including the balance between Th1 and Th2 cytokines to control parasite multiplication and lesion extension. Other cytokines known for their role in inflammatory processes such as interleukin IL-17 or IL-18 as well as factors controlling keratinocyte differentiation and the inflammatory process in the skin, like the Notch system, could also be involved in the disease outcome. Notch receptors are a group of transmembrane proteins that regulate cell fate decisions during development and adulthood in many tissues, including keratinocyte differentiation and T-cell lineage commitment, depending on their activation by specific groups of ligands (Delta-like or Jagged). Objectives To compare the in situ expression of Notch system proteins (receptors, ligands and transcriptional factors) and cytokines possibly involved in the disease outcome (IL-17, IL-18, IL-23 and transforming growth factor-beta) in ATL cutaneous and mucosal lesions, according to the response to therapy with N-methyl glucamine. Methods Cutaneous and mucosal biopsies obtained from patients prior to therapy with N-methyl glucamine were analysed by immunohistochemistry and real-time polymerase chain reaction. Results Notch receptors and Delta-like ligands were found increased in patients with ATL, particularly those with poor response to therapy or with mucosal lesions. Conclusions The increase of Notch receptors and Delta-like ligands in patients with a poor response to treatment suggests that these patients would require a more aggressive therapeutic approach or at least a more thorough and rigorous follow-up.
Resumo:
Background and Purpose-Plasma glutathione peroxidase (GPx-3) is a major antioxidant enzyme in plasma and the extracellular space that scavenges reactive oxygen species produced during normal metabolism or after oxidative insult. A deficiency of this enzyme increases extracellular oxidant stress, promotes platelet activation, and may promote oxidative posttranslational modification of fibrinogen. We recently identified a haplotype (H-2) in the GPx-3 gene promoter that increases the risk of arterial ischemic stroke among children and young adults. Methods-The aim of this study is to identify possible relationships between promoter haplotypes in the GPx-3 gene and cerebral venous thrombosis (CVT). We studied the GPx-3 gene promoter from 23 patients with CVT and 123 young controls (18 to 45 years) by single-stranded conformational polymorphism and sequencing analysis. Results-Over half of CVT patients (52.1%) were heterozygous (H1H2) or homozygous (H2H2) carriers of the H-2 haplotype compared with 12.2% of controls, yielding a more than 10-fold independent increase in the risk of CVT (OR=10.7; 95% CI, 2.70 to 42.36; P<0.0001). Among women, the interaction of the H2 haplotype with hormonal risk factors increased the OR of CVT to almost 70 (P<0.0001). Conclusions-These findings show that a novel GPx-3 promoter haplotype is a strong, independent risk factor for CVT. As we have previously shown that this haplotype is associated with a reduction in transcriptional activity, which compromises antioxidant activity and antithrombotic benefits of the enzyme, these results suggest that a deficiency of GPx-3 leads to a cerebral venous thrombophilic state.
Resumo:
Although it is well known that catecholamines inhibit skeletal muscle protein degradation, the molecular underlying mechanism remains unclear. This study was undertaken to investigate the role of beta(2)-adrenoceptors (AR) and cAMP in regulating the ubiquitin-proteasome system (UPS) in skeletal muscle. We report that increased levels of cAMP in isolated muscles, promoted by the cAMP phosphodiesterase inhibitor isobutyl methylxanthine was accompanied by decreased activity of the UPS, levels of ubiquitin-protein conjugates, and expression of atrogin-1, a key ubiquitin-protein ligase involved in muscle atrophy. In cultured myotubes, atrogin-1 induction after dexamethasone treatment was completely prevented by isobutyl methylxanthine. Furthermore, administration of clenbuterol, a selective beta(2)-agonist, to mice increased muscle cAMP levels and suppressed the fasting-induced expression of atrogin-1 and MuRF-1, atrogin-1 mRNA being much more responsive to clenbuterol. Moreover, clenbuterol increased the phosphorylation of muscle Akt and Foxo3a in fasted rats. Similar responses were observed in muscles exposed to dibutyryl-cAMP. The stimulatory effect of clenbuterol on cAMP and Akt was abolished in muscles from beta(2)-AR knockout mice. The suppressive effect of beta(2)-agonist on atrogin-1 was not mediated by PGC-1 alpha (peroxisome proliferator-activated receptor-gamma coactivator 1 alpha known to be induced by beta(2)-agonists and previously shown to inhibit atrogin-1 expression), because food-deprived PGC-1 alpha knockout mice were still sensitive to clenbuterol. These findings suggest that the cAMP increase induced by stimulation of beta(2)-AR in skeletal muscles from fasted mice is possibly the mechanism by which catecholamines suppress atrogin-1 and the UPS, this effect being mediated via phosphorylation of Akt and thus inactivation of Foxo3. (Endocrinology 150: 5395-5404, 2009)
Resumo:
RNA silencing refers to a series of nuclear and cytoplasmatic processes involved in the post-transcriptional regulation of gene expression or post-transcriptional gene silencing (PTGS), either by sequence-specific mRNA degradation or by translational at-rest. The best characterized small RNAs are microRNAs (miRNAs), which predominantly perform gene silencing through post-transcriptional mechanisms. in this work we used bioinformatic approaches to identify the parasitic trematode Schistosoma Mansoni sequences that are similar to enzymes involved in the post-transcriptional gene silencing mediated by miRNA pathway. We used amino acid sequences of well-known proteins involved in the miRNA pathway against S. mansoni genome and transcriptome databases identifying a total of 13 Putative proteins in the parasite. In addition, the transcript levels of SinDicer1 and SmAgo2/3/4 were identified by qRT-PCR using cercariae, adult worms, eggs and in vitro Cultivated schistosomula. Our results showed that the SmDicer1 and SmAgo2/3/4 are differentially expressed during schistosomula development, suggesting that the miRNA pathway is regulated at the transcript level and therefore may control gene expression during the life cycle of S. mansoni. (C) 2008 Published by Elsevier Ireland Ltd.
Resumo:
Although several stage-specific genes have been identified in Leishmania, the molecular mechanisms governing developmental gene regulation in this organism are still not well understood. We have previously reported an attenuation of virulence in Leishmania major and L braziliensis carrying extra-copies of the spliced leader RNA gene. Here, we surveyed the major differences in proteome and transcript expression profiles between the spliced leader RNA overexpressor and control lines using two-dimensional gel electrophoresis and differential display reverse transcription PCR, respectively. Thirty-nine genes related to stress response, cytoskeleton, proteolysis, cell cycle control and proliferation, energy generation, gene transcription, RNA processing and post-transcriptional regulation have abnormal patterns of expression in the spliced leader RNA overexpressor line. The evaluation of proteolytic pathways in the mutant revealed a selective increase of cysteine protease activity and an exacerbated ubiquitin-labeled protein population. Polysome profile analysis and measurement of cellular protein aggregates showed that protein translation in the spliced leader RNA overexpressor line is increased when compared to the control line. We found that L major promastigotes maintain homeostasis in culture when challenged with a metabolic imbalance generated by spliced leader RNA surplus through modulation of intracellular proteolysis. However, this might interfere with a fine-tuned gene expression control necessary for the amastigote multiplication in the mammalian host. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Neutrophilic granulocytes play a major role in the initiation and resolution of the inflammatory response, and demonstrate significant transcriptional and translational activity. Although much was known about neutrophils prior to the introduction of proteomics, the use of MS-based methodologies has provided an unprecedented tool to confirm and extend previous findings. In the present study, we performed a Gel-LC-MS/MS analysis of neutrophil detergent insoluble and whole cell lysate fractions of resting neutrophils. We achieved a set of identifications through the use of high-resolution mass spectrometry and validation of its data. We identified a total of 1249 proteins with a wide range of intensities from both detergent-insoluble and whole cell lysate fractions, allowing a mapping of proteins such as those involved in intracellular transport (Rab and Sec family proteins) and cell signaling (S100 proteins). These results represent the most comprehensive proteomic characterization of resting human neutrophils to date, and provide important information relevant for further studies of the immune system in health and disease. The methods applied here can be employed to help us understand how neutrophils respond to various physiologic and pathophysiologic conditions and could be extended to protein quantitation after cell activation.
Resumo:
Diphenism in social bees is essentially contingent on nutrient-induced cellular and systemic physiological responses resulting in divergent gene expression patterns. Analyses of juvenile hormone (JH) titers and functional genomics assays of the insulin-insulin-like signaling (IIS) pathway and its associated branch, target-of-rapamycin (TOR), revealed systemic responses underlying honey bee (Apis mellifera) caste development. Nevertheless, little attention has been paid to cellular metabolic responses. Following up earlier investigations showing major caste differences in oxidative metabolism and mitochondrial physiology, we herein identified honey bee homologs of hypoxia signaling factors, HIF alpha/Sima, HIF beta/Tango and PHD/Fatiga and we investigated their transcript levels throughout critical stages of larval development. Amsima, Amtango and Amfatiga showed correlated transcriptional activity, with two peaks of occurring in both queens and workers, the first one shortly after the last larval molt and the second during the cocoon-spinning phase. Transcript levels for the three genes were consistently higher in workers. As there is no evidence for major microenvironmental differences in oxygen levels within the brood nest area, this appears to be an inherent caste character. Quantitative PCR analyses on worker brain, ovary, and leg imaginal discs showed that these tissues differ in transcript levels. Being a highly conserved pathway and linked to IIS/TOR, the hypoxia gene expression pattern seen in honey bee larvae denotes that the hypoxia pathway has undergone a transformation, at least during larval development, from a response to environmental oxygen concentrations to an endogenous regulatory factor in the diphenic development of honey bee larvae. (C) 2010 Elsevier Ltd. All rights reserved.