930 resultados para Toxicological chemistry
Changes in stratospheric composition, chemistry, radiation and climate caused by volcanic eruptions.
Resumo:
[ 1] We have used a fully coupled chemistry-climate model (CCM), which generates its own wind and temperature quasi-biennial oscillation (QBO), to study the effect of coupling on the QBO and to examine the QBO signals in stratospheric trace gases, particularly ozone. Radiative coupling of the interactive chemistry to the underlying general circulation model tends to prolong the QBO period and to increase the QBO amplitude in the equatorial zonal wind in the lower and middle stratosphere. The model ozone QBO agrees well with Stratospheric Aerosol and Gas Experiment II and Total Ozone Mapping Spectrometer satellite observations in terms of vertical and latitudinal structure. The model captures the ozone QBO phase change near 28 km over the equator and the column phase change near +/- 15 degrees latitude. Diagnosis of the model chemical terms shows that variations in NOx are the main chemical driver of the O-3 QBO around 35 km, i.e., above the O-3 phase change.
Resumo:
The first IUPAC Manual of Symbols and Terminology for Physicochemical Quantities and Units (the Green Book) of which this is the direct successor, was published in 1969, with the object of 'securing clarity and precision, and wider agreement in the use of symbols, by chemists in different countries, among physicists, chemists and engineers, and by editors of scientific journals'. Subsequent revisions have taken account of many developments in the field, culminating in the major extension and revision represented by the 1988 edition under the simplified title Quantities, Units and Symbols in Physical Chemistry. This 2007, third edition, is a further revision of the material which reflects the experience of the contributors with the previous editions. The book has been systematically brought up to date and new sections have been added. It strives to improve the exchange of scientific information among the readers in different disciplines and across different nations. In a rapidly expanding volume of scientific literature where each discipline has a tendency to retreat into its own jargon this book attempts to provide a readable compilation of widely used terms and symbols from many sources together with brief understandable definitions. This is the definitive guide for scientists and organizations working across a multitude of disciplines requiring internationally approved nomenclature.
Resumo:
Pseudoacid chlorides of 2,5-bis(4-fluorobenzoyl) terephthalic acid and 4,6-bis(4-fluorobenzoyl) isophthalic acid condense with primary amines to afford diastereomeric bis(hydroxyindolinone)s in good isolated yields and with diamines to give high molecular weight poly(hydroxyindolinone)s. Bis-N-pyrenemethyl bis(hydroxyindolinone)s assemble, even in dipolar solvents such as DMSO, with macrocyclic diimide-sulfones to give [3]pseudorotaxanes stabilized by electronically complementary aromatic π−π-stacking and shape-complementary van der Waals interactions.
Resumo:
The importance of maintaining a clear distinction between the names and symbols for quantities and the names and symbols for units.
Resumo:
An alphabetic list of acronyms used in theoretical chemistry is presented. Some explanatory references have been added to make acronyms better understandable but still more are needed. Critical comments, additional references, etc. are requested.
Resumo:
The atmospheric chemistry of several gases used in industrial applications, C4F9OC2H5 (HFE-7200), C4F9OCH3 (HFE-7100), C3F7OCH3 (HFE-7000) and C3F7CH2OH, has been studied. The discharge flow technique coupled with mass-spectrometric detection has been used to study the kinetics of their reactions with OH radicals as a function of temperature. The infrared spectra of the compounds have also been measured. The following Arrhenius expressions for the reactions were determined (in units of cm3 molecule-1 s-1): k(OH + HFE-7200) = (6.9+2.3-1.7) × 10-11 exp(-(2030 ± 190)/T); k(OH + HFE-7100) = (2.8+3.2-1.5) × 10-11 exp(-(2200 ± 490)/T); k(OH + HFE-7000) = (2.0+1.2-0.7) × 10-11 exp(-(2130 ± 290)/T); and k(OH + C3F7CH2OH) = (1.4+0.3-0.2) × 10-11 exp(-(1460 ± 120)/T). From the infrared spectra, radiative forcing efficiencies were determined and compared with earlier estimates in the literature. These were combined with the kinetic data to estimate 100-year time horizon global warming potentials relative to CO2 of 69, 337, 499 and 36 for HFE-7200, HFE-7100, HFE-7000 and CF3CF2CF2CH2OH, respectively.