967 resultados para Topological Bifurcation
Resumo:
When studying physical systems, it is common to make approximations: the contact interaction is linear, the crystal is periodic, the variations occurs slowly, the mass of a particle is constant with velocity, or the position of a particle is exactly known are just a few examples. These approximations help us simplify complex systems to make them more comprehensible while still demonstrating interesting physics. But what happens when these assumptions break down? This question becomes particularly interesting in the materials science community in designing new materials structures with exotic properties In this thesis, we study the mechanical response and dynamics in granular crystals, in which the approximation of linearity and infinite size break down. The system is inherently finite, and contact interaction can be tuned to access different nonlinear regimes. When the assumptions of linearity and perfect periodicity are no longer valid, a host of interesting physical phenomena presents itself. The advantage of using a granular crystal is in its experimental feasibility and its similarity to many other materials systems. This allows us to both leverage past experience in the condensed matter physics and materials science communities while also presenting results with implications beyond the narrower granular physics community. In addition, we bring tools from the nonlinear systems community to study the dynamics in finite lattices, where there are inherently more degrees of freedom. This approach leads to the major contributions of this thesis in broken periodic systems. We demonstrate the first defect mode whose spatial profile can be tuned from highly localized to completely delocalized by simply tuning an external parameter. Using the sensitive dynamics near bifurcation points, we present a completely new approach to modifying the incremental stiffness of a lattice to arbitrary values. We show how using nonlinear defect modes, the incremental stiffness can be tuned to anywhere in the force-displacement relation. Other contributions include demonstrating nonlinear breakdown of mechanical filters as a result of finite size, and the presents of frequency attenuation bands in essentially nonlinear materials. We finish by presenting two new energy harvesting systems based on our experience with instabilities in weakly nonlinear systems.
Resumo:
In this thesis an extensive study is made of the set P of all paranormal operators in B(H), the set of all bounded endomorphisms on the complex Hilbert space H. T ϵ B(H) is paranormal if for each z contained in the resolvent set of T, d(z, σ(T))//(T-zI)-1 = 1 where d(z, σ(T)) is the distance from z to σ(T), the spectrum of T. P contains the set N of normal operators and P contains the set of hyponormal operators. However, P is contained in L, the set of all T ϵ B(H) such that the convex hull of the spectrum of T is equal to the closure of the numerical range of T. Thus, N≤P≤L.
If the uniform operator (norm) topology is placed on B(H), then the relative topological properties of N, P, L can be discussed. In Section IV, it is shown that: 1) N P and L are arc-wise connected and closed, 2) N, P, and L are nowhere dense subsets of B(H) when dim H ≥ 2, 3) N = P when dimH ˂ ∞ , 4) N is a nowhere dense subset of P when dimH ˂ ∞ , 5) P is not a nowhere dense subset of L when dimH ˂ ∞ , and 6) it is not known if P is a nowhere dense subset of L when dimH ˂ ∞.
The spectral properties of paranormal operators are of current interest in the literature. Putnam [22, 23] has shown that certain points on the boundary of the spectrum of a paranormal operator are either normal eigenvalues or normal approximate eigenvalues. Stampfli [26] has shown that a hyponormal operator with countable spectrum is normal. However, in Theorem 3.3, it is shown that a paranormal operator T with countable spectrum can be written as the direct sum, N ⊕ A, of a normal operator N with σ(N) = σ(T) and of an operator A with σ(A) a subset of the derived set of σ(T). It is then shown that A need not be normal. If we restrict the countable spectrum of T ϵ P to lie on a C2-smooth rectifiable Jordan curve Go, then T must be normal [see Theorem 3.5 and its Corollary]. If T is a scalar paranormal operator with countable spectrum, then in order to conclude that T is normal the condition of σ(T) ≤ Go can be relaxed [see Theorem 3.6]. In Theorem 3.7 it is then shown that the above result is not true when T is not assumed to be scalar. It was then conjectured that if T ϵ P with σ(T) ≤ Go, then T is normal. The proof of Theorem 3.5 relies heavily on the assumption that T has countable spectrum and cannot be generalized. However, the corollary to Theorem 3.9 states that if T ϵ P with σ(T) ≤ Go, then T has a non-trivial lattice of invariant subspaces. After the completion of most of the work on this thesis, Stampfli [30, 31] published a proof that a paranormal operator T with σ(T) ≤ Go is normal. His proof uses some rather deep results concerning numerical ranges whereas the proof of Theorem 3.5 uses relatively elementary methods.
Resumo:
Neste trabalho abordamos a teoria de Ginzburg-Landau da supercondutividade (teoria GL). Apresentamos suas origens, características e resultados mais importantes. A idéia fundamental desta teoria e descrever a transição de fase que sofrem alguns metais de uma fase normal para uma fase supercondutora. Durante uma transição de fase em supercondutores do tipo II é característico o surgimento de linhas de fluxo magnético em determinadas regiões de tamanho finito chamadas comumente de vórtices. A dinâmica destas estruturas topológicas é de grande interesse na comunidade científica atual e impulsiona incontáveis núcleos de pesquisa na área da supercondutividade. Baseado nisto estudamos como essas estruturas topológicas influenciam em uma transição de fase em um modelo bidimensional conhecido como modelo XY. No modelo XY vemos que os principais responsáveis pela transição de fase são os vórtices (na verdade pares de vórtice-antivórtice). Villain, observando este fato, percebeu que poderia tornar explícita a contribuição desses defeitos topológicos na função de partição do modelo XY realizando uma transformação de dualidade. Este modelo serve como inspiração para a proposta deste trabalho. Apresentamos aqui um modelo baseado em considerações físicas sobre sistemas de matéria condensada e ao mesmo tempo utilizamos um formalismo desenvolvido recentemente na referência [29] que possibilita tornar explícita a contribuição dos defeitos topológicos na ação original proposta em nossa teoria. Após isso analisamos alguns limites clássicos e finalmente realizamos as flutuações quânticas visando obter a expressão completa da função correlação dos vórtices o que pode ser muito útil em teorias de vórtices interagentes (dinâmica de vórtices).
Resumo:
A Riesz space with a Hausdorff, locally convex topology determined by Riesz seminorms is called a locally convex Riesz space. A sequence {xn} in a locally convex Riesz space L is said to converge locally to x ϵ L if for some topologically bounded set B and every real r ˃ 0 there exists N (r) and n ≥ N (r) implies x – xn ϵ rb. Local Cauchy sequences are defined analogously, and L is said to be locally complete if every local Cauchy sequence converges locally. Then L is locally complete if and only if every monotone local Cauchy sequence has a least upper bound. This is a somewhat more general form of the completeness criterion for Riesz – normed Riesz spaces given by Luxemburg and Zaanen. Locally complete, bound, locally convex Riesz spaces are barrelled. If the space is metrizable, local completeness and topological completeness are equivalent.
Two measures of the non-archimedean character of a non-archimedean Riesz space L are the smallest ideal Ao (L) such that quotient space is Archimedean and the ideal I (L) = { x ϵ L: for some 0 ≤ v ϵ L, n |x| ≤ v for n = 1, 2, …}. In general Ao (L) ᴝ I (L). If L is itself a quotient space, a necessary and sufficient condition that Ao (L) = I (L) is given. There is an example where Ao (L) ≠ I (L).
A necessary and sufficient condition that a Riesz space L have every quotient space Archimedean is that for every 0 ≤ u, v ϵ L there exist u1 = sup (inf (n v, u): n = 1, 2, …), and real numbers m1 and m2 such that m1 u1 ≥ v1 and m2 v1 ≥ u1. If, in addition, L is Dedekind σ – complete, then L may be represented as the space of all functions which vanish off finite subsets of some non-empty set.
Resumo:
Quantum Computing is a relatively modern field which simulates quantum computation conditions. Moreover, it can be used to estimate which quasiparticles would endure better in a quantum environment. Topological Quantum Computing (TQC) is an approximation for reducing the quantum decoherence problem1, which is responsible for error appearance in the representation of information. This project tackles specific instances of TQC problems using MOEAs (Multi-objective Optimization Evolutionary Algorithms). A MOEA is a type of algorithm which will optimize two or more objectives of a problem simultaneously, using a population based approach. We have implemented MOEAs that use probabilistic procedures found in EDAs (Estimation of Distribution Algorithms), since in general, EDAs have found better solutions than ordinary EAs (Evolutionary Algorithms), even though they are more costly. Both, EDAs and MOEAs are population-based algorithms. The objective of this project was to use a multi-objective approach in order to find good solutions for several instances of a TQC problem. In particular, the objectives considered in the project were the error approximation and the length of a solution. The tool we used to solve the instances of the problem was the multi-objective framework PISA. Because PISA has not too much documentation available, we had to go through a process of reverse-engineering of the framework to understand its modules and the way they communicate with each other. Once its functioning was understood, we began working on a module dedicated to the braid problem. Finally, we submitted this module to an exhaustive experimentation phase and collected results.
Resumo:
O objetivo geral deste projeto é propor um modelo bidimensional que descreva o novo estado supercondutor, que apresenta simetria de cristal líquido, chamado de supercondutor nemático. O estudo começa com uma introdução sobre a teoria de Landau-Ginzburg das transições de fase, onde são discutidos conceitos como parâmetro de ordem e as ordens das transições de fase, que são essenciais para o desenvolvimento deste projeto. Em seguida, é feita uma discussão sobre as principais características dos supercondutores como a resistência zero, o efeito Meissner-Ochsenfeld, os tipos de supercondutores, o surgimento de vórtices e uma análise sobre a teoria de Landau-Ginzburg para transição de fase metal-supercondutor. Após isto, é feita uma abordagem sobre os principais tipos de cristais líquidos, com destaque ao cristal líquido nemático, onde é desenvolvida a teoria de Landau-Ginzburg para transição de fase isotrópica-nemática e um estudo sobre o surgimento de disclinações no cristal líquido nemático em duas dimensões. Por fim, é apresentado o modelo proposto para descrever o estado supercondutor nemático, com a construção da teoria de Landau-Ginzburg, o estudo do acoplamento entre as fases e os defeitos topológicos presentes nesse estado.
Resumo:
O aumento de doenças cardiovasculares possui como fator primordial e, mais comum, o aumento da pressão arterial (PA). Esta, pode gerar complicações em outros órgãos e acarretar diversas patologias, podendo levar a morte. A hipertensão é uma síndrome multifatorial, cuja maior incidência ocorre em indivíduos obesos, sedentários e consumidores em excesso de bebidas alcoólicas e sal. O corpo carotídeo (CC) é um órgão quimiorreceptor localizado na bifurcação da artéria carótida, formado de estruturas básicas chamadas glomus. Cada glomus carotídeo é constituído de células tipo 1 envoltas por células tipo 2 ou sustentaculares. Este trabalho teve como objetivo analisar as alterações morfofuncionais que ocorrem no CC, causada por hipertensão arterial induzida pelo L-NAME, um inibidor da enzima óxido nítrico sintase. Para isso, o estudo utilizou 20 ratos Wistar divididos em dois grupos: controle (C) e L-NAME (LN). Após a administração de 40mg/kg/dia de L-NAME por 45 dias, o CC foi coletado. Observou-se aumento significativo da pressão arterial a partir da segunda semana de administração de L-NAME. Análise quantitativa mostrou uma redução no número de núcleos do glomus carotídeo e o aumento na área total do órgão no grupo LN. Não foi encontrado diferença significativa no número de núcleos totais do corpo carotídeo entre os grupos. Na análise morfológica do grupo LN, observamos a formação de vacúolos nas células tipo 1 do glomus, bem como uma redução do número total de núcleos das células de cada glomus carotídeo. A análise qualitativa sugeriu um aumento no número de fibras colágenas e fibras do sistema elástico na matriz extracelular e grânulos no grupo LN. Imunomarcações com anticorpo anti VEGF e NF-kB e nNOS mostram-se aumentadas e dispersas por todo CC no grupo LN em relação ao grupo C. Além disso, marcações para Substância-P também foram observadas em maior quantidade nas células tipo 1 do grupo LN. Quanto à marcação para PGP 9.5, houve a redução desta marcação caracterizada dentro do glomus carotídeo grupo LN comparado ao grupo C. O estudo sugere que o corpo carotídeo, em resposta à hipertensão induzida pela inibição da enzima óxido nítrico sintase, gera mudanças morfofisiológicas semelhantes as encontradas em hipóxia.
Resumo:
Na natureza há vários fenômenos envolvendo transições de fase com quebra ou restauração de simetrias. Tipicamente, mudanças de fase, são associadas com uma quebra ou restauração de simetria, que acontecem quando um determinado parâmetro de controle é variado, como por exemplo temperatura, densidade, campos externos, ou de forma dinâmica. Essas mudanças que os sistemas sofrem podem levar a formação de defeitos topológicos, tais como paredes de domínios, vórtices ou monopolos magnéticos. Nesse trabalho estudamos particularmente mudanças de fase associadas com quebras ou restaurações dinâmicas de simetria que estão associadas com formação ou destruição de defeitos do tipo paredes de domínio em modelos de campos escalares com simetria discreta. Nesses processos dinâmicos com formação ou destruição de domínios, estudamos a possibilidade de formação de estruturas do tipo oscillons, que são soluções não homogêneas e instáveis de campo, mas que podem concentrar nelas uma quantidade apreciável de energia e terem uma vida (duração) suficientemente grande para serem de importância física. Estudamos a possibilidade de formação dessas soluções em modelos de dois campos escalares interagentes em que o sistema é preparado em diferentes situações, com a dinâmica resultante nesses sistemas estudada numa rede discreta.
Resumo:
Artículo Polyhedron 2011
Resumo:
This paper is aimed at designing a robust vaccination strategy capable of eradicating an infectious disease from a population regardless of the potential uncertainty in the parameters defining the disease. For this purpose, a control theoretic approach based on a sliding-mode control law is used. Initially, the controller is designed assuming certain knowledge of an upper-bound of the uncertainty signal. Afterwards, this condition is removed while an adaptive sliding control system is designed. The closed-loop properties are proved mathematically in the nonadaptive and adaptive cases. Furthermore, the usual sign function appearing in the sliding-mode control is substituted by the saturation function in order to prevent chattering. In addition, the properties achieved by the closed-loop system under this variation are also stated and proved analytically. The closed-loop system is able to attain the control objective regardless of the parametric uncertainties of the model and the lack of a priori knowledge on the system.
Resumo:
We examined whether the relationship between climate and salmon production was linked through the effect of climate on the growth of sockeye salmon (Oncorhynchus nerka) at sea. Smolt length and juvenile, immature, and maturing growth rates were estimated from increments on scales of adult sockeye salmon that returned to the Karluk River and Lake system on Kodiak Island, Alaska, over 77 years, 1924–2000. Survival was higher during the warm climate regimes and lower during the cool regime. Growth was not correlated with survival, as estimated from the residuals of the Ricker stock-recruitment model. Juvenile growth was correlated with an atmospheric forcing index and immature growth was correlated with the amount of coastal precipitation, but the magnitude of winter and spring coastal downwelling in the Gulf of Alaska and the Pacific Northwest atmospheric patterns that influence the directional bifurcation of the Pacific Current were not related to the growth of Karluk sockeye salmon. However, indices of sea surface temperature, coastal precipitation, and atmospheric circulation in the eastern North Pacific were correlated with the survival of Karluk sockeye salmon. Winter and spring precipitation and atmospheric circulation are possible processes linking survival to climate variation in Karluk sockeye salmon.
Resumo:
Intriguing phenomena and novel physics predicted for two-dimensional (2D) systems formed by electrons in Dirac or Rashba states motivate an active search for new materials or combinations of the already revealed ones. Being very promising ingredients in themselves, interplaying Dirac and Rashba systems can provide a base for next generation of spintronics devices, to a considerable extent, by mixing their striking properties or by improving technically significant characteristics of each other. Here, we demonstrate that in BiTeI@PbSb2Te4 composed of a BiTeI trilayer on top of the topological insulator (TI) PbSb2Te4 weakly- and strongly-coupled Dirac-Rashba hybrid systems are realized. The coupling strength depends on both interface hexagonal stacking and trilayer-stacking order. The weakly-coupled system can serve as a prototype to examine, e.g., plasmonic excitations, frictional drag, spin-polarized transport, and charge-spin separation effect in multilayer helical metals. In the strongly-coupled regime, within similar to 100 meV energy interval of the bulk TI projected bandgap a helical state substituting for the TI surface state appears. This new state is characterized by a larger momentum, similar velocity, and strong localization within BiTeI. We anticipate that our findings pave the way for designing a new type of spintronics devices based on Rashba-Dirac coupled systems.
Resumo:
This paper applies Micken's discretization method to obtain a discrete-time SEIR epidemic model. The positivity of the model along with the existence and stability of equilibrium points is discussed for the discrete-time case. Afterwards, the design of a state observer for this discrete-time SEIR epidemic model is tackled. The analysis of the model along with the observer design is faced in an implicit way instead of obtaining first an explicit formulation of the system which is the novelty of the presented approach. Moreover, some sufficient conditions to ensure the asymptotic stability of the observer are provided in terms of a matrix inequality that can be cast in the form of a LMI. The feasibility of the matrix inequality is proved, while some simulation examples show the operation and usefulness of the observer.
Resumo:
The main goal of this work is to give the reader a basic introduction into the subject of topological groups, bringing together the areas of topology and group theory.
Resumo:
This paper relies on the concept of next generation matrix defined ad hoc for a new proposed extended SEIR model referred to as SI(n)R-model to study its stability. The model includes n successive stages of infectious subpopulations, each one acting at the exposed subpopulation of the next infectious stage in a cascade global disposal where each infectious population acts as the exposed subpopulation of the next infectious stage. The model also has internal delays which characterize the time intervals of the coupling of the susceptible dynamics with the infectious populations of the various cascade infectious stages. Since the susceptible subpopulation is common, and then unique, to all the infectious stages, its coupled dynamic action on each of those stages is modeled with an increasing delay as the infectious stage index increases from 1 to n. The physical interpretation of the model is that the dynamics of the disease exhibits different stages in which the infectivity and the mortality rates vary as the individual numbers go through the process of recovery, each stage with a characteristic average time.