822 resultados para Time-Delayed Systems
Resumo:
A time-resolved inverse spatially offset Raman spectrometer was constructed for depth profiling of Raman-active substances under both the lab and the field environments. The system operating principles and performance are discussed along with its advantages relative to traditional continuous wave spatially offset Raman spectrometer. The developed spectrometer uses a combination of space- and time-resolved detection in order to obtain high-quality Raman spectra from substances hidden behind coloured opaque surface layers, such as plastic and garments, with a single measurement. The time-gated spatially offset Raman spectrometer was successfully used to detect concealed explosives and drug precursors under incandescent and fluorescent background light as well as under daylight. The average screening time was 50 s per measurement. The excitation energy requirements were relatively low (20 mW) which makes the probe safe for screening hazardous substances. The unit has been designed with nanosecond laser excitation and gated detection, making it of lower cost and complexity than previous picosecond-based systems, to provide a functional platform for in-line or in-field sensing of chemical substances.
Resumo:
It is not uncommon for enterprises today to be faced with the demand to integrate and incor- porate many different and possibly heterogeneous systems which are generally independently designed and developed, to allow seamless access. In effect, the integration of these systems results in one large whole system that must be able, at the same time, to maintain the local autonomy and to continue working as an independent entity. This problem has introduced a new distributed architecture called federated systems. The most challenging issue in federated systems is to find answers for the question of how to efficiently cooperate while preserving their autonomous characteristic, especially the security autonomy. This thesis intends to address this issue. The thesis reviews the evolution of the concept of federated systems and discusses the organisational characteristics as well as remaining security issues with the existing approaches. The thesis examines how delegation can be used as means to achieve better security, especially authorisation while maintaining autonomy for the participating member of the federation. A delegation taxonomy is proposed as one of the main contributions. The major contribution of this thesis is to study and design a mechanism to support dele- gation within and between multiple security domains with constraint management capability. A novel delegation framework is proposed including two modules: Delegation Constraint Man- agement module and Policy Management module. The first module is designed to effectively create, track and manage delegation constraints, especially for delegation processes which require re-delegation (indirect delegation). The first module employs two algorithms to trace the root authority of a delegation constraint chain and to prevent the potential conflict when creating a delegation constraint chain if necessary. The first module is designed for conflict prevention not conflict resolution. The second module is designed to support the first module via the policy comparison capability. The major function of this module is to provide the delegation framework the capability to compare policies and constraints (written under the format of a policy). The module is an extension of Lin et al.'s work on policy filtering and policy analysis. Throughout the thesis, some case studies are used as examples to illustrate the discussed concepts. These two modules are designed to capture one of the most important aspects of the delegation process: the relationships between the delegation transactions and the involved constraints, which are not very well addressed by the existing approaches. This contribution is significant because the relationships provide information to keep track and en- force the involved delegation constraints and, therefore, play a vital role in maintaining and enforcing security for transactions across multiple security domains.
Resumo:
In 1999 Richards compared the accuracy of commercially available motion capture systems commonly used in biomechanics. Richards identified that in static tests the optical motion capture systems generally produced RMS errors of less than 1.0 mm. During dynamic tests, the RMS error increased to up to 4.2 mm in some systems. In the last 12 years motion capture systems have continued to evolve and now include high-resolution CCD or CMOS image sensors, wireless communication, and high full frame sampling frequencies. In addition to hardware advances, there have also been a number of advances in software, which includes improved calibration and tracking algorithms, real time data streaming, and the introduction of the c3d standard. These advances have allowed the system manufactures to maintain a high retail price in the name of advancement. In areas such as gait analysis and ergonomics many of the advanced features such as high resolution image sensors and high sampling frequencies are not required due to the nature of the task often investigated. Recently Natural Point introduced low cost cameras, which on face value appear to be suitable as at very least a high quality teaching tool in biomechanics and possibly even a research tool when coupled with the correct calibration and tracking software. The aim of the study was therefore to compare both the linear accuracy and quality of angular kinematics from a typical high end motion capture system and a low cost system during a simple task.
Resumo:
The Cardiac Access-Remoteness Index of Australia (Cardiac ARIA) used geographic information systems (GIS) to model population level, road network accessibility to cardiac services before and after a cardiac event for all (20,387) population localities in Australia., The index ranged from 1A (access to all cardiac services within 1 h driving time) to 8E (limited or no access). The methodology derived an objective geographic measure of accessibility to required cardiac services across Australia. Approximately 71% of the 2006 Australian population had very good access to acute hospital services and services after hospital discharge. This GIS model could be applied to other regions or health conditions where spatially enabled data were available.
Resumo:
This project investigates machine listening and improvisation in interactive music systems with the goal of improvising musically appropriate accompaniment to an audio stream in real-time. The input audio may be from a live musical ensemble, or playback of a recording for use by a DJ. I present a collection of robust techniques for machine listening in the context of Western popular dance music genres, and strategies of improvisation to allow for intuitive and musically salient interaction in live performance. The findings are embodied in a computational agent – the Jambot – capable of real-time musical improvisation in an ensemble setting. Conceptually the agent’s functionality is split into three domains: reception, analysis and generation. The project has resulted in novel techniques for addressing a range of issues in each of these domains. In the reception domain I present a novel suite of onset detection algorithms for real-time detection and classification of percussive onsets. This suite achieves reasonable discrimination between the kick, snare and hi-hat attacks of a standard drum-kit, with sufficiently low-latency to allow perceptually simultaneous triggering of accompaniment notes. The onset detection algorithms are designed to operate in the context of complex polyphonic audio. In the analysis domain I present novel beat-tracking and metre-induction algorithms that operate in real-time and are responsive to change in a live setting. I also present a novel analytic model of rhythm, based on musically salient features. This model informs the generation process, affording intuitive parametric control and allowing for the creation of a broad range of interesting rhythms. In the generation domain I present a novel improvisatory architecture drawing on theories of music perception, which provides a mechanism for the real-time generation of complementary accompaniment in an ensemble setting. All of these innovations have been combined into a computational agent – the Jambot, which is capable of producing improvised percussive musical accompaniment to an audio stream in real-time. I situate the architectural philosophy of the Jambot within contemporary debate regarding the nature of cognition and artificial intelligence, and argue for an approach to algorithmic improvisation that privileges the minimisation of cognitive dissonance in human-computer interaction. This thesis contains extensive written discussions of the Jambot and its component algorithms, along with some comparative analyses of aspects of its operation and aesthetic evaluations of its output. The accompanying CD contains the Jambot software, along with video documentation of experiments and performances conducted during the project.
Resumo:
In recent times, light gauge steel framed (LSF) structures, such as cold-formed steel wall systems, are increasingly used, but without a full understanding of their fire performance. Traditionally the fire resistance rating of these load-bearing LSF wall systems is based on approximate prescriptive methods developed based on limited fire tests. Very often they are limited to standard wall configurations used by the industry. Increased fire rating is provided simply by adding more plasterboards to these walls. This is not an acceptable situation as it not only inhibits innovation and structural and cost efficiencies but also casts doubt over the fire safety of these wall systems. Hence a detailed fire research study into the performance of LSF wall systems was undertaken using full scale fire tests and extensive numerical studies. A new composite wall panel developed at QUT was also considered in this study, where the insulation was used externally between the plasterboards on both sides of the steel wall frame instead of locating it in the cavity. Three full scale fire tests of LSF wall systems built using the new composite panel system were undertaken at a higher load ratio using a gas furnace designed to deliver heat in accordance with the standard time temperature curve in AS 1530.4 (SA, 2005). Fire tests included the measurements of load-deformation characteristics of LSF walls until failure as well as associated time-temperature measurements across the thickness and along the length of all the specimens. Tests of LSF walls under axial compression load have shown the improvement to their fire performance and fire resistance rating when the new composite panel was used. Hence this research recommends the use of the new composite panel system for cold-formed LSF walls. The numerical study was undertaken using a finite element program ABAQUS. The finite element analyses were conducted under both steady state and transient state conditions using the measured hot and cold flange temperature distributions from the fire tests. The elevated temperature reduction factors for mechanical properties were based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). These finite element models were first validated by comparing their results with experimental test results from this study and Kolarkar (2010). The developed finite element models were able to predict the failure times within 5 minutes. The validated model was then used in a detailed numerical study into the strength of cold-formed thin-walled steel channels used in both the conventional and the new composite panel systems to increase the understanding of their behaviour under nonuniform elevated temperature conditions and to develop fire design rules. The measured time-temperature distributions obtained from the fire tests were used. Since the fire tests showed that the plasterboards provided sufficient lateral restraint until the failure of LSF wall panels, this assumption was also used in the analyses and was further validated by comparison with experimental results. Hence in this study of LSF wall studs, only the flexural buckling about the major axis and local buckling were considered. A new fire design method was proposed using AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated. A spread sheet based design tool was developed based on the above design codes to predict the failure load ratio versus time and temperature for varying LSF wall configurations including insulations. Idealised time-temperature profiles were developed based on the measured temperature values of the studs. This was used in a detailed numerical study to fully understand the structural behaviour of LSF wall panels. Appropriate equations were proposed to find the critical temperatures for different composite panels, varying in steel thickness, steel grade and screw spacing for any load ratio. Hence useful and simple design rules were proposed based on the current cold-formed steel structures and fire design standards, and their accuracy and advantages were discussed. The results were also used to validate the fire design rules developed based on AS/NZS 4600 (SA, 2005) and Eurocode Part 1.3 (ECS, 2006). This demonstrated the significant improvements to the design method when compared to the currently used prescriptive design methods for LSF wall systems under fire conditions. In summary, this research has developed comprehensive experimental and numerical thermal and structural performance data for both the conventional and the proposed new load bearing LSF wall systems under standard fire conditions. Finite element models were developed to predict the failure times of LSF walls accurately. Idealized hot flange temperature profiles were developed for non-insulated, cavity and externally insulated load bearing wall systems. Suitable fire design rules and spread sheet based design tools were developed based on the existing standards to predict the ultimate failure load, failure times and failure temperatures of LSF wall studs. Simplified equations were proposed to find the critical temperatures for varying wall panel configurations and load ratios. The results from this research are useful to both structural and fire engineers and researchers. Most importantly, this research has significantly improved the knowledge and understanding of cold-formed LSF loadbearing walls under standard fire conditions.
Resumo:
This paper presents the benefits and issues related to travel time prediction on urban network. Travel time information quantifies congestion and is perhaps the most important network performance measure. Travel time prediction has been an active area of research for the last five decades. The activities related to ITS have increased the attention of researchers for better and accurate real-time prediction of travel time. Majority of the literature on travel time prediction is applicable to freeways where, under non-incident conditions, traffic flow is not affected by external factors such as traffic control signals and opposing traffic flows. On urban environment the problem is more complicated due to conflicting areas (intersections), mid-link sources and sinks etc. and needs to be addressed.
Resumo:
It is accepted that the efficiency of sugar cane clarification is closely linked with sugar juice composition (including suspended or insoluble impurities), the inorganic phosphate content, the liming condition and type, and the interactions between the juice components. These interactions are not well understood, particularly those between calcium, phosphate, and sucrose in sugar cane juice. Studies have been conducted on calcium oxide (CaO)/phosphate/sucrose systems in both synthetic and factory juices to provide further information on the defecation process (i.e., simple liming to effect impurity removal) and to identify an effective clarification process that would result in reduced scaling of sugar factory evaporators, pans, and centrifugals. Results have shown that a two-stage process involving the addition of lime saccharate to a set juice pH followed by the addition of sodium hydroxide to a final juice pH or a similar two-stage process where the order of addition of the alkalis is reversed prior to clarification reduces the impurity loading of the clarified juice compared to that of the clarified juice obtained by the conventional defecation process. The treatment process showed reductions in CaO (27% to 50%) and MgO (up to 20%) in clarified juices with no apparent loss in juice clarity or increase in residence time of the mud particles compared to those in the conventional process. There was also a reduction in the SiO2 content. However, the disadvantage of this process is the significant increase in the Na2O content.
Resumo:
Objectives: To investigate the effect of hot and cold temperatures on ambulance attendances. Design: An ecological time series study. Setting and participants: The study was conducted in Brisbane, Australia. We collected information on 783 935 daily ambulance attendances, along with data of associated meteorological variables and air pollutants, for the period of 2000–2007. Outcome measures: The total number of ambulance attendances was examined, along with those related to cardiovascular, respiratory and other non-traumatic conditions. Generalised additive models were used to assess the relationship between daily mean temperature and the number of ambulance attendances. Results: There were statistically significant relationships between mean temperature and ambulance attendances for all categories. Acute heat effects were found with a 1.17% (95% CI: 0.86%, 1.48%) increase in total attendances for 1 °C increase above threshold (0–1 days lag). Cold effects were delayed and longer lasting with a 1.30% (0.87%, 1.73%) increase in total attendances for a 1 °C decrease below the threshold (2–15 days lag). Harvesting was observed following initial acute periods of heat effects, but not for cold effects. Conclusions: This study shows that both hot and cold temperatures led to increases in ambulance attendances for different medical conditions. Our findings support the notion that ambulance attendance records are a valid and timely source of data for use in the development of local weather/health early warning systems.
Resumo:
Many physical processes exhibit fractional order behavior that varies with time or space. The continuum of order in the fractional calculus allows the order of the fractional operator to be considered as a variable. In this paper, we consider the time variable fractional order mobile-immobile advection-dispersion model. Numerical methods and analyses of stability and convergence for the fractional partial differential equations are quite limited and difficult to derive. This motivates us to develop efficient numerical methods as well as stability and convergence of the implicit numerical methods for the fractional order mobile immobile advection-dispersion model. In the paper, we use the Coimbra variable time fractional derivative which is more efficient from the numerical standpoint and is preferable for modeling dynamical systems. An implicit Euler approximation for the equation is proposed and then the stability of the approximation are investigated. As for the convergence of the numerical scheme we only consider a special case, i.e. the time fractional derivative is independent of time variable t. The case where the time fractional derivative depends both the time variable t and the space variable x will be considered in the future work. Finally, numerical examples are provided to show that the implicit Euler approximation is computationally efficient.
Resumo:
Appearance-based localization is increasingly used for loop closure detection in metric SLAM systems. Since it relies only upon the appearance-based similarity between images from two locations, it can perform loop closure regardless of accumulated metric error. However, the computation time and memory requirements of current appearance-based methods scale linearly not only with the size of the environment but also with the operation time of the platform. These properties impose severe restrictions on longterm autonomy for mobile robots, as loop closure performance will inevitably degrade with increased operation time. We present a set of improvements to the appearance-based SLAM algorithm CAT-SLAM to constrain computation scaling and memory usage with minimal degradation in performance over time. The appearance-based comparison stage is accelerated by exploiting properties of the particle observation update, and nodes in the continuous trajectory map are removed according to minimal information loss criteria. We demonstrate constant time and space loop closure detection in a large urban environment with recall performance exceeding FAB-MAP by a factor of 3 at 100% precision, and investigate the minimum computational and memory requirements for maintaining mapping performance.
Resumo:
There are an increasing number of compression systems available for treatment of venous leg ulcers and limited evidence on the relative effectiveness of these systems. The purpose of this study was to conduct a randomised controlled trial to compare the effectiveness of a 4-layer compression bandage system with Class 3 compression hosiery on healing and quality of life in patients with venous leg ulcers. Data were collected from 103 participants on demographics, health, ulcer status, treatments, pain, depression and quality of life for 24 weeks. After 24 weeks, 86% of the 4-layer bandage group and 77% of the hosiery group were healed (p=0.24). Median time to healing for the bandage group was 10 weeks, in comparison to 14 weeks for the hosiery group (p=0.018). Cox proportional hazards regression found participants in the 4-layer system were 2.1 times (95% CI 1.2–3.5) more likely to heal than those in hosiery, while longer ulcer duration, larger ulcer area and higher depression scores significantly delayed healing. No differences between groups were found in quality of life or pain measures. Findings indicate these systems were equally effective in healing patients by 24 weeks, however a 4-layer system may produce a more rapid response.
Numerical and experimental studies of cold-formed steel floor systems under standard fire conditions
Resumo:
Light gauge cold-formed steel frame (LSF) structures are increasingly used in industrial, commercial and residential buildings because of their non-combustibility, dimensional stability, and ease of installation. A floor-ceiling system is an example of its applications. LSF floor-ceiling systems must be designed to serve as fire compartment boundaries and provide adequate fire resistance. Fire rated floor-ceiling assemblies formed with new materials and construction methodologies have been increasingly used in buildings. However, limited research has been undertaken in the past and hence a thorough understanding of their fire resistance behaviour is not available. Recently a new composite panel in which an external insulation layer is used between two plasterboards has been developed at QUT to provide a higher fire rating to LSF floors under standard fire conditions. But its increased fire rating could not be determined using the currently available design methods. Research on LSF floor systems under fire conditions is relatively recent and the behaviour of floor joists and other components in the systems is not fully understood. The present design methods thus require the use of expensive fire protection materials to protect them from excessive heat increase during a fire. This leads to uneconomical and conservative designs. Fire rating of these floor systems is provided simply by adding more plasterboard sheets to the steel joists and such an approach is totally inefficient. Hence a detailed fire research study was undertaken into the structural and thermal performance of LSF floor systems including those protected by the new composite panel system using full scale fire tests and extensive numerical studies. Experimental study included both the conventional and the new steel floor-ceiling systems under structural and fire loads using a gas furnace designed to deliver heat in accordance with the standard time- temperature curve in AS 1530.4 (SA, 2005). Fire tests included the behavioural and deflection characteristics of LSF floor joists until failure as well as related time-temperature measurements across the section and along the length of all the specimens. Full scale fire tests have shown that the structural and thermal performance of externally insulated LSF floor system was superior than traditional LSF floors with or without cavity insulation. Therefore this research recommends the use of the new composite panel system for cold-formed LSF floor-ceiling systems. The numerical analyses of LSF floor joists were undertaken using the finite element program ABAQUS based on the measured time-temperature profiles obtained from fire tests under both steady state and transient state conditions. Mechanical properties at elevated temperatures were considered based on the equations proposed by Dolamune Kankanamge and Mahendran (2011). Finite element models were calibrated using the full scale test results and used to further provide a detailed understanding of the structural fire behaviour of the LSF floor-ceiling systems. The models also confirmed the superior performance of the new composite panel system. The validated model was then used in a detailed parametric study. Fire tests and the numerical studies showed that plasterboards provided sufficient lateral restraint to LSF floor joists until their failure. Hence only the section moment capacity of LSF floor joists subjected to local buckling effects was considered in this research. To predict the section moment capacity at elevated temperatures, the effective section modulus of joists at ambient temperature is generally considered adequate. However, this research has shown that it leads to considerable over- estimation of the local buckling capacity of joist subject to non-uniform temperature distributions under fire conditions. Therefore new simplified fire design rules were proposed for LSF floor joist to determine the section moment capacity at elevated temperature based on AS/NZS 4600 (SA, 2005), NAS (AISI, 2007) and Eurocode 3 Part 1.3 (ECS, 2006). The accuracy of the proposed fire design rules was verified with finite element analysis results. A spread sheet based design tool was also developed based on these design rules to predict the failure load ratio versus time, moment capacity versus time and temperature for various LSF floor configurations. Idealised time-temperature profiles of LSF floor joists were developed based on fire test measurements. They were used in the detailed parametric study to fully understand the structural and fire behaviour of LSF floor panels. Simple design rules were also proposed to predict both critical average joist temperatures and failure times (fire rating) of LSF floor systems with various floor configurations and structural parameters under any given load ratio. Findings from this research have led to a comprehensive understanding of the structural and fire behaviour of LSF floor systems including those protected by the new composite panel, and simple design methods. These design rules were proposed within the guidelines of the Australian/New Zealand, American and European cold- formed steel structures standard codes of practice. These may also lead to further improvements to fire resistance through suitable modifications to the current composite panel system.
Resumo:
A breaker restrike is an abnormal arcing phenomenon, leading to a possible breaker failure. Eventually, this failure leads to interruption of the transmission and distribution of the electricity supply system until the breaker is replaced. Before 2008, there was little evidence in the literature of monitoring techniques based on restrike measurement and interpretation produced during switching of capacitor banks and shunt reactor banks in power systems. In 2008 a non-intrusive radiometric restrike measurement method and a restrike hardware detection algorithm were developed by M.S. Ramli and B. Kasztenny. However, the limitations of the radiometric measurement method are a band limited frequency response as well as limitations in amplitude determination. Current restrike detection methods and algorithms require the use of wide bandwidth current transformers and high voltage dividers. A restrike switch model using Alternative Transient Program (ATP) and Wavelet Transforms which support diagnostics are proposed. Restrike phenomena become a new diagnostic process using measurements, ATP and Wavelet Transforms for online interrupter monitoring. This research project investigates the restrike switch model Parameter „A. dielectric voltage gradient related to a normal and slowed case of the contact opening velocity and the escalation voltages, which can be used as a diagnostic tool for a vacuum circuit-breaker (CB) at service voltages between 11 kV and 63 kV. During current interruption of an inductive load at current quenching or chopping, a transient voltage is developed across the contact gap. The dielectric strength of the gap should rise to a point to withstand this transient voltage. If it does not, the gap will flash over, resulting in a restrike. A straight line is fitted through the voltage points at flashover of the contact gap. This is the point at which the gap voltage has reached a value that exceeds the dielectric strength of the gap. This research shows that a change in opening contact velocity of the vacuum CB produces a corresponding change in the slope of the gap escalation voltage envelope. To investigate the diagnostic process, an ATP restrike switch model was modified with contact opening velocity computation for restrike waveform signature analyses along with experimental investigations. This also enhanced a mathematical CB model with the empirical dielectric model for SF6 (sulphur hexa-fluoride) CBs at service voltages above 63 kV and a generalised dielectric curve model for 12 kV CBs. A CB restrike can be predicted if there is a similar type of restrike waveform signatures for measured and simulated waveforms. The restrike switch model applications are used for: computer simulations as virtual experiments, including predicting breaker restrikes; estimating the interrupter remaining life of SF6 puffer CBs; checking system stresses; assessing point-on-wave (POW) operations; and for a restrike detection algorithm development using Wavelet Transforms. A simulated high frequency nozzle current magnitude was applied to an Equation (derived from the literature) which can calculate the life extension of the interrupter of a SF6 high voltage CB. The restrike waveform signatures for a medium and high voltage CB identify its possible failure mechanism such as delayed opening, degraded dielectric strength and improper contact travel. The simulated and measured restrike waveform signatures are analysed using Matlab software for automatic detection. Experimental investigation of a 12 kV vacuum CB diagnostic was carried out for the parameter determination and a passive antenna calibration was also successfully developed with applications for field implementation. The degradation features were also evaluated with a predictive interpretation technique from the experiments, and the subsequent simulation indicates that the drop in voltage related to the slow opening velocity mechanism measurement to give a degree of contact degradation. A predictive interpretation technique is a computer modeling for assessing switching device performance, which allows one to vary a single parameter at a time; this is often difficult to do experimentally because of the variable contact opening velocity. The significance of this thesis outcome is that it is a non-intrusive method developed using measurements, ATP and Wavelet Transforms to predict and interpret a breaker restrike risk. The measurements on high voltage circuit-breakers can identify degradation that can interrupt the distribution and transmission of an electricity supply system. It is hoped that the techniques for the monitoring of restrike phenomena developed by this research will form part of a diagnostic process that will be valuable for detecting breaker stresses relating to the interrupter lifetime. Suggestions for future research, including a field implementation proposal to validate the restrike switch model for ATP system studies and the hot dielectric strength curve model for SF6 CBs, are given in Appendix A.