954 resultados para Time dependent Ginzburg-Landau equations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure phase Cu2ZnSnS4 (CZTS) nanoparticles were successfully synthesized via polyacrylic acid (PAA) assisted one-pot hydrothermal route. The morphology, crystal structure, composition and optical properties as well as the photoactivity of the as-synthesized CZTS nanoparticles were characterized by X-ray diffraction, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectrometer, UV-visible absorption spectroscopy and photoelectrochemical measurement. The influence of various synthetic conditions, such as the reaction temperature, reaction duration and the amount of PAA in the precursor solution on the formation of CZTS compound was systematically investigated. The results have shown that the crystal phase, morphology and particle size of CZTS can be tailored by controlling the reaction conditions. The formation mechanism of CZTS in the hydrothermal reaction has been proposed based on the investigation of time-dependent phase evolution of CZTS which showed that metal sulfides (e.g., Cu2S, SnS2 and ZnS) were formed firstly during the hydrothermal reaction before forming CZTS compound through nucleation. The band gap of the as-synthesized CZTS nanoparticles is 1.49 eV. The thin film electrode based on the synthesized CZTS nanoparticles in a three-electrode photoelectrochemical cell generated pronounced photocurrent under illumination provided by a red light-emitting diode (LED, 627 nm), indicating the photoactivity of the semiconductor material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new dearomatized porphyrinoid, 5,10-diiminoporphodimethene (5,10-DIPD), has been prepared by palladium-catalyzed hydrazination of 5,10-dibromo-15,20-bis(3,5-di-tert-butylphenyl)porphyrin and its nickel(II) complex, by using ethyl and 4-methoxybenzyl carbazates. The oxidative dearomatization of the porphyrin ring occurs in high yield. Further oxidation with 2,3-dichloro-5,6-dicyanobenzoquinone forms the corresponding 5,10-bis(azocarboxylates), thereby restoring the porphyrin aromaticity. The UV/visible spectra of the NiII DIPDs exhibit remarkable redshifts of the lowest-energy bands to 780 nm, and differential pulse voltammetry reveals a contracted electrochemical HOMO–LUMO gap of 1.44 V. Density functional theory (DFT) was used to calculate the optimized geometries and frontier molecular orbitals of model 5,10-DIPD Ni7c and 5,10-bis(azocarboxylate) Ni8c. The conformations of the carbamate groups and the configurations of the CNZ unit were considered in conjunction with the NOESY spectra, to generate the global minimum geometry and two other structures with slightly higher energies. In the absence of solution data regarding conformations, ten possible local minimum conformations were considered for Ni8c. Partition of the porphyrin macrocycle into tri- and monopyrrole fragments in Ni7c and the inclusion of terminal conjugating functional groups generate unique frontier molecular orbital distributions and a HOMO–LUMO transition with a strong element of charge transfer from the monopyrrole ring. Time-dependent DFT calculations were performed for the three lowest-energy structures of Ni7c and Ni8c, and weighting according to their energies allowed the prediction of the electronic spectra. The calculations reproduce the lower-energy regions of the spectra and the overall forms of the spectra with high accuracy, but agreement is not as good in the Soret region below 450 nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hydantoin derivatives possess a variety of biochemical and pharmacological properties and consequently are used to treat many human diseases. However, there are only few studies focusing on their potential as cancer therapeutic agents. In the present study, we have examined anticancer properties of two novel spirohydantoin compounds, 8-(3,4-difluorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1] octane-3,4'-imidazolidine]-2',5'-dione (DFH) and 8-(3,4-dichlorobenzyl)-1'-(pent-4-enyl)-8-azaspiro[bicyclo[3.2.1]octane-3,4'-imidazolidine]-2',5'-dione (DCH). Both the compounds exhibited dose- and time-dependent cytotoxic effect on human leukemic cell lines, K562, Reh, CEM and 8ES. Incorporation of tritiated thymidine ([H-3) thymidine) in conjunction with cell cycle analysis suggested that DFH and DCH inhibited the growth of leukemic cells. Downregulation of PCNA and p-histone H3 further confirm that the growth inhibition could be at the level of DNA replication. Flow cytometric analysis indicated the accumulation of cells at subG1 phase suggesting induction of apoptosis, which was further confirmed and quantified both by fluorescence-activated cell sorting (FACS) and confocal microscopy following annexin V-FITC/propidium iodide (PI) staining. Mechanistically, our data support the induction of apoptosis by activation of the mitochondrial pathway. Results supporting such a model include, elevated levels of p53, and BAD, decreased level of BCL2, activation and cleavage of caspase 9, activation of procaspase 3, poly (ADP-ribosyl) polymerase (PARP) cleavage, downregulation of Ku70, Ku80 and DNA fragmentation. Based on these results we discuss the mechanism of apoptosis induced by DFH and its implications in leukemia therapy. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify new anticancer compounds from nature, a prefractionated library derived from Australian endemic plants was generated and screened against the prostate cancer cell line LNCaP using a metabolic assay. Fractions from the seeds, leaves, and wood of Anopterus macleayanus showed cytotoxic activity and were subsequently investigated using a combination of bioassay-guided fractionation and mass-directed isolation. This led to the identification of four new diterpenoid alkaloids, 6α-acetoxyanopterine (1), 4′-hydroxy-6α-acetoxyanopterine (2), 4′-hydroxyanopterine (3), and 11α-benzoylanopterine (4), along with four known compounds, anopterine (5), 7β-hydroxyanopterine (6), 7β,4′-dihydroxyanopterine (7), and 7β-hydroxy-11α-benzoylanopterine (8); all compounds were purified as their trifluoroacetate salt. The chemical structures of 1–8 were elucidated after analysis of 1D/2D NMR and MS data. Compounds 1–8 were evaluated for cytotoxic activity against a panel of human prostate cancer cells (LNCaP, C4-2B, and DuCaP) and nonmalignant cell lines (BPH-1 and WPMY-1), using a live-cell imaging system and a metabolic assay. All compounds showed potent cytotoxicity with IC50 values of <400 nM; compound 1 was the most active natural product from this series, with an IC50 value of 3.1 nM toward the LNCaP cell line. The live-cell imaging assay on 1–8 showed a concentration- and time-dependent effect on the cell morphology and proliferation of LNCaP cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystallization of amorphous germanium (a-Ge) by laser or electron beam heating is a remarkably complex process that involves several distinct modes of crystal growth and the development of intricate microstructural patterns on the nanosecond to ten microsecond time scales. Here we use dynamic transmission electron microscopy (DTEM) to study the fast, complex crystallization dynamics with 10 nm spatial and 15 ns temporal resolution. We have obtained time-resolved real-space images of nanosecond laser-induced crystallization in a-Ge with unprecedentedly high spatial resolution. Direct visualization of the crystallization front allows for time-resolved snapshots of the initiation and roughening of the dendrites on submicrosecond time scales. This growth is followed by a rapid transition to a ledgelike growth mechanism that produces a layered microstructure on a time scale of several microseconds. This study provides insights into the mechanisms governing this complex crystallization process and is a dramatic demonstration of the power of DTEM for studying time-dependent material processes far from equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction of Cibacron blue F3GA with ribosome inactivating proteins, ricin, ricin A-chain and momordin has been investigated using difference absorption spectroscopy. Ricin was found to bind the dye with a 20- and 2-fold lower affinity than ricin A-chain and momordin, respectively. A time dependent increase in the amplitude of Cibacron blue difference spectrum in the presence of ricin was observed on addition of beta-mercaptoethanol. Analysis of the kinetic profile of this increase showed a biphasic phenomenon and the observed rates were found to be independent of the concentration of beta-mercaptoethanol. Kinetics of reduction of the intersubunit disulphide bond in ricin by beta-mercaptoethanol showed that reduction pet se is a second order reaction. Therefore, the observed changes in the difference spectra of Cibacron blue probably indicate a slow change in the conformation of ricin, triggered by reduction of the intersubunit disulphide bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A time-dependent quantum mechanical (TDQM) method of wavepacket propagation in computing resonance Raman intensities for polyatomic systems, has been developed and demonstrated by applying it tocis-stilbene andtrans-azobenzene. In the case of the former, Raman excitation profiles (REPs) for the various vibrational modes have also been computed. It is observed that the calculated absorption spectrum and the REPs compare very well with the experimental results. A comparison of these results with those of the often semiclassical approach reveals that the TDQM method can be used to study polyatomic systems with as much ease as the semiclassical wavepacket method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop a new theoretical formulation to study ion conductance in electrolyte solutions, based on a mode coupling theory treatment of the electrolyte friction. The new theory provides expressions for both the ion atmosphere relaxation and electrophoretic contributions to the total electrolyte friction that acts on a moving ion. While the ion atmosphere relaxation term arises from the time-dependent microscopic interaction of the moving ion with the surrounding ions in the solution, the electrophoretic term originates from the coupling of the ion's velocity to the collective current mode of the ion atmosphere. Mode coupling theory, combined with time-dependent density functional theory of ion atmosphere fluctuations, leads to self-consistent expressions for these two terms which also include the effects of self-motion of the ion under consideration. These expressions have been solved for the concentration dependence of electrolyte friction and ion conductance. It is shown that in the limit of very low ion concentration, the present theory correctly reduces to the well-known Debye-Huckel-Onsager limiting law which predicts a linear dependence of conductance on the square root of ion concentration (c). At moderate and high concentrations, the present theory predicts a significant nonlinear and weaker dependence on root c which is in very good agreement with experimental results. The present theory is self-contained and does not involve any adjustable parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulent mixed convection flow and heat transfer in a shallow enclosure with and without partitions and with a series of block-like heat generating components is studied numerically for a range of Reynolds and Grashof numbers with a time-dependent formulation. The flow and temperature distributions are taken to be two-dimensional. Regions with the same velocity and temperature distributions can be identified assuming repeated placement of the blocks and fluid entry and exit openings at regular distances, neglecting the end wall effects. One half of such module is chosen as the computational domain taking into account the symmetry about the vertical centreline. The mixed convection inlet velocity is treated as the sum of forced and natural convection components, with the individual components delineated based on pressure drop across the enclosure. The Reynolds number is based on forced convection velocity. Turbulence computations are performed using the standard k– model and the Launder–Sharma low-Reynolds number k– model. The results show that higher Reynolds numbers tend to create a recirculation region of increasing strength in the core region and that the effect of buoyancy becomes insignificant beyond a Reynolds number of typically 5×105. The Euler number in turbulent flows is higher by about 30 per cent than that in the laminar regime. The dimensionless inlet velocity in pure natural convection varies as Gr1/3. Results are also presented for a number of quantities of interest such as the flow and temperature distributions, Nusselt number, pressure drop and the maximum dimensionless temperature in the block, along with correlations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the cytotoxic effects of nimbolide, a limonoid present in leaves and flowers of the neem tree (Azadirachta indica) on human choriocarcinoma (BeWo) cells. Treatment with nimbolide resulted in dose- and time-dependent inhibition of growth of BeWo cells with IC50 values of 2.01 and 1.19 μM for 7 and 24 h respectively, accompanied by downregulation of proliferating cell nuclear antigen. Examination of nuclear morphology revealed fragmentation and condensation indicating apoptosis. Increase in the generation of reactive oxygen species (ROS) that was reversed by addition of reduced glutathione suggested ROS involvement in the cytotoxicity of nimbolide. A decrease in Bcl-2/Bax ratio with increased expression of Apaf-1 and caspase-3, and cleavage of poly(ADP-ribose) polymerase provide compelling evidence that nimbolide-induced apoptosis is mediated by the mitochondrial pathway. The results of the present study suggest that nimbolide has immense potential in cancer prevention and therapy based on its antiproliferative and apoptosis inducing effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose Acute cerebral ischemic events are associated with rupture of vulnerable carotid atheroma and subsequent thrombosis. Factors such as luminal stenosis and fibrous cap thickness have been thought to be important risk factors for plaque rupture. We used a flow-structure interaction model to simulate the interaction between blood flow and atheromatous plaque to evaluate the effect of the degree of luminal stenosis and fibrous cap thickness on plaque vulnerability. Methods A coupled nonlinear time-dependent model with a flow-plaque interaction simulation was used to perform flow and stress/strain analysis in a stenotic carotid artery model. The stress distribution within the plaque and the flow conditions within the vessel were calculated for every case when varying the fibrous cap thickness from 0.1 to 2 mm and the degree of luminal stenosis from 10% to 95%. A rupture stress of 300 kPa was chosen to indicate a high risk of plaque rupture. A 1-sample t test was used to compare plaque stresses with the rupture stress. Results High stress concentrations were found in the plaques in arteries with >70% degree of stenosis. Plaque stresses in arteries with 30% to 70% stenosis increased exponentially as fibrous cap thickness decreased. A decrease of fibrous cap thickness from 0.4 to 0.2 mm resulted in an increase of plaque stress from 141 to 409 kPa in a 40% degree stenotic artery. Conclusions There is an increase in plaque stress in arteries with a thin fibrous cap. The presence of a moderate carotid stenosis (30% to 70%) with a thin fibrous cap indicates a high risk for plaque rupture. Patients in the future may be risk stratified by measuring both fibrous cap thickness and luminal stenosis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atheromatous plaque rupture h the cause of the majority of strokes and heart attacks in the developed world. The role of calcium deposits and their contribution to plaque vulnerability are controversial. Some studies have suggested that calcified plaque tends to be more stable whereas others have suggested the opposite. This study uses a finite element model to evaluate the effect of calcium deposits on the stress within the fibrous cap by varying their location and size. Plaque fibrous cap, lipid pool and calcification were modeled as hyperelastic, Isotropic, (nearly) incompressible materials with different properties for large deformation analysis by assigning time-dependent pressure loading on the lumen wall. The stress and strain contours were illustrated for each condition for comparison. Von Mises stress only increases up to 1.5% when varying the location of calcification in the lipid pool distant to the fibrous cap. Calcification in the fibrous cap leads to a 43% increase of Von Mises stress when compared with that in the lipid pool. An increase of 100% of calcification area leads to a 15% stress increase in the fibrous cap. Calcification in the lipid pool does not increase fibrous cap stress when it is distant to the fibrous cap, whilst large areas of calcification close to or in the fibrous cap may lead to a high stress concentration within the fibrous cap, which may cause plaque rupture. This study highlights the application of a computational model on a simulation of clinical problems, and it may provide insights into the mechanism of plaque rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotine, the addictive compound of tobacco products, exerts its effects in the brain by binding to neuronal acetylcholine nicotinic receptors (nAChRs). The aim of the present study was to increase the knowledge of nicotine s complex effects, the focus being on homomeric alpha7-nAChRs that are widely expressed in the brain. Nicotinic regulation of differential signalling molecules including transcriptional regulators was also studied. We found that the number of alpha7-nAChRs is increased in specific brain regions in mice, in a time-dependent manner after chronic oral nicotine administration. Our results suggest that in addition to alpha4beta2-nAChRs, the other major nAChR subtype expressed in the brain, the number of alpha7-nAChRs is affected by chronic presence of nicotine. We suggest that when studying the long-term effects of nicotine, the duration on administration is of great importance. Next, we observed that nicotine exposure induces accumulation of cAMP in cell cultures expressing nAChRs. Furthermore, nicotine-induced alpha7-nAChR upregulation was potentiated by treatments enhancing cAMP-signalling, suggesting a role for cAMP in the upregulation process. Protein kinase C (PKC) was found essential for the basal regulation of alpha7-nAChR number. The nicotine-evoked alpha7-nAChR upregulation could be further increased by PKC overexpression. Thirdly, the effects of nicotine on dopamine and cAMP regulated phosphoprotein (DARPP-32) were characterised in rat brain. The results show that DARPP-32 is regulated by both acute and long-term nicotine treatment in the striatal subdivisions. The effect of acute nicotine is dose-dependent and the three striatal regions display differential sensitivities to nicotine. Chronic nicotine is also able to regulate DARPP-32 signalling with prominent effect seen in the nucleus accumbens (NAc), suggesting a role for DARPP-32 in the mediation of long-term effects of nicotine. Finally, the regulation of transcription factors Elk-1 and FosB/deltaFosB by nicotine was investigated. We found that Elk-1 is activated by acute nicotine selectively in the NAc core and hippocampal area CA1, whereas acute nicotine does not affect FosB/deltaFosB. Long-term intermittent or continuous nicotine increases the level of total Elk-1 in the same brain regions as acute nicotine. FosB/deltaFosB is also affected by chronic nicotine. Thus, similarly to other drugs of abuse, nicotine regulates transcriptional regulators Elk-1 and FosB/deltaFosB. These results bring further support for a common mechanism underlying the development of addiction. Nicotine s positive effects on learning and memory might involve the transcription factor Elk-1 based on the changes seen in the hippocampus, the key area in cognitive functions.