931 resultados para Tidal flats.
Resumo:
The bioactivity screening of fractions from two inter-tidal sponges collected from the north of China Yellow Sea and one sponge collected from the South Chinese Sea was reported in this study. In sponge Hymeniacidon perleve there were 9 fractions out of 15 from CHCl3 extract with anti Staphylococcus aureus activity, 9 fractions out of 19 from BuOH extract with anti Escherichia coli activity, and three fractions from CHCl3 extract which had moderate to strong activity in inhibiting Bacillus subtilis, Candida albicans, and Aspergilus niger. The fractions of Reniochalina sp. showed bioactivity against bacteria and fungi. The fractions of Acanthella acuta Schmidt showed bioactivity against S. aureus and fungi. One compound from H. perleve obtained by the bioactively directing isolation was tested for bioactivity against the human hepatoma cell line Qgy7701 (IC50 10.1 mug/ml), Burkitt's lymphoma cell line Raji (IC50 9.76 mug/ml) and chronic myelogenous leukemia K562 (IC50 1.90 mug/ml). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
Geochemical processes in estuarine and coastal waters often occur on temporally and spatially small scales, resulting in variability of metal speciation and dissolved concentrations. Thus, surveys, which are aimed to improve our understanding of metal behaviour in such systems, benefit from high-resolution, interactive sampling campaigns. The present paper discusses a high-resolution approach to coastal monitoring, with the application of an automated voltammetric metal analyser for on-line measurements of dissolved trace metals in the Gulf of Cadiz, south-west Spain. This coastal sea receives metal-rich inputs from a metalliferous mining area, mainly via the Huelva estuary. On-line measurements of dissolved Cu, Zn, Ni and Co were carried out on-board ship during an eight-day sampling campaign in the study area in June 1997. A pumping system operated continuously underway and provided sampled water from a depth of ca. 4 m. Total dissolved metal concentrations measured on-line in the Gulf of Cadiz ranged between <5 nM Cu (<3 nM Ni) ca. 50 km off-shore and 60–90 nM Cu (5–13 nM Ni) in the vicinity of the Huelva estuary. The survey revealed steep gradients and strong tidal variability in the dissolved metal plume extending from the Huelva estuary into the Gulf of Cadiz. Further on-line measurements were carried out with the automatic metal monitor from the bank of the Odiel estuary over a full tidal cycle, at dissolved metal concentrations in the μM range. The application confirmed the suitability of the automated metal monitor for coastal sampling, and demonstrated its adaptability to a wide range of environmental conditions in the dynamic waters of estuaries and coastal seas. The near-real time acquisition of dissolved metal concentrations at high resolution enabled an interactive sampling campaign and therefore the close investigation of tidal variability in the development of the Huelva estuary metal plume.
Resumo:
The validation of a fully automated dissolved Ni monitor for in situ estuarine studies is presented, based on adsorptive cathodic stripping voltammetry (AdCSV). Dissolved Ni concentrations were determined following on-line filtration and UV digestion, and addition of an AdCSV ligand (dimethyl glyoxime) and pH buffer (N-2-hydroxyethylpiperazine-N′-2-ethanesulphonic acid). The technique is capable of up to six fully quantified Ni measurements per hour. The automated in situ methodology was applied successfully during two surveys on the Tamar estuary (south west Britain). The strongly varying sample matrix encountered in the estuarine system did not present analytical interferences, and each sample was quantified using internal standard additions. Up to 37 Ni measurements were performed during each survey, which involved 13 h of continuous sampling and analysis. The high resolution data from the winter and summer tidal cycle studies allowed a thorough interpretation of the biogeochemical processes in the studied estuarine system.
Resumo:
Five diagnostic experiments with a 3D baroclinic hydrodynamic and sediment transport model ECOMSED in couple with the third generation wave model SWAN and the Grant-Madsen bottom boundary layer model driven by the monthly sediment load of the Yellow River, were conducted to separately diagnose effects of different hydrodynamic factors on transport of suspended sediment discharged from the Yellow River in the Bohai Sea. Both transport and spatio-temporal distribution of suspended sediment concentration in the Bohai Sea were numerially simulated. It could be concluded that suspended sediment discharged from the Yellow River cannot be delivered in long distance under the condition of tidal current. Almost all of sediments from the Yellow River are deposited outside the delta under the condition of wind-driven current, and only very small of them are transported faraway. On the basis of wind forcing, sediments from the Yellow River are mainly transported north-northwestward, and others which are first delivered to the Laizhou Bay are continuously moved northward. An obvious 3D structure characteristic of sediment transport is produced in the wind-driven and tide-induced residual circulation condition. Transport patterns at all layers are generally consistent with circulation structure, but there is apparent deviation between the depth-averaged sediment flux and the circulation structure. The phase of temporal variation of sediment concentration is consistent with that of the bottom shear stress, both of which are proved to have a ten-day cycle in wave and current condition.
Resumo:
Circadian growth rhythm of the juvenile sporophyte of the brown alga Undaria pirznatifida was measured with the computer-aided image analysis system in constant florescent white light under constant temperature (10 degrees C). The growth rhythm persisted for 4 d in constant light with a free-running period of 25. 6 h. Egg release from filamentous gametophytes pre-cultured in the light - dark regime was evaluated for six consecutive days at fixed time intervals in constant white light and 12 h light per day. Egg release rhythm persisted for 3 d in both regimes, indicating the endogenous nature. Temporal scale of egg release and gametogenesis in 18, 16, 12 and 8 h light per day were evaluated respectively using vegetatively propagated filamentous gametophytes. Egg release occurred 2 h after the onset of dark phase and peaked at midnight. Evaluation of the rates of oogonium formation, egg release or fertilization revealed no significant differences in four light-dark regimes, indicating; the great plasticity of sexual reproduction. No photoperiodic effect in gametogenesis in terms of oogonium formation and egg release was found, but fertilization in short days was significantly higher than in long days. Results of this investigation further confirmed the general occurrence of circadian rhythms in inter-tidal seaweed species.
Resumo:
Suspended Particulate Matter (SPM) concentrations at various levels within the water column, together with salinity and temperature, were measured using water samples collected from six stations across the Straits of Dover. The sampling programme covered a 16-month period, undertaken during 23 cruises. On the basis of the spatial variability in the concentrations, the water bodies are divided by several boundaries, controlled by tidal and wind conditions. Within the water column, SPM concentrations were higher near the sea bed than in the surface waters. Throughout the cross-section, maximum concentrations occurred adjacent to the coastlines. Temporal variability in the SPM concentration exists on daily and seasonal scales within the coastal waters (4.2 to 74.5 mg L-1): resuspension processes, in response to semi-diurnal tidal cycles (with a period of around 12.4 h) and spring-neap cycles (with a period of 15 days) make significant contributions. Distinctive seasonal/annual concentration changes have also been observed. In the offshore waters, such variability is much less significant (0.9 to 6.0 mg L-1). In the summer the English Coastal Zone is associated with relatively high SPM concentrations: the Central Zone has a low and stable SPM concentration between these zones, there is a Transitional Zone, where there is a rapid response of SPM concentration to wind forcing. Finally, the French Coastal Zone is characterized by variable (sometimes high) SPM concentrations. Because of the zonation, SPM fluxes within the Dover Strait are controlled by different transport mechanisms. Within the Central Zone, the flux can be represented by the product of mean water discharges and SPM concentrations. However, within the coastal zones fluctuations in SPM concentrations on various time-scales must be considered. In order to calculate the maximum and minimum SPM fluxes, 10 cells were divided in the strait. A simple modelling calculation has been proposed for this complex area. The effect of spring-neap tidal cycles and seasonal changes can contribute significantly to the overall flux, which is of the order of 20 x 10(6) t.yr(-1) (through the Dover Strait, towards the North Sea). Such an estimate is higher than most obtained previously. (C) 2000 Ifremer/CNRS/IRD/Editions scientifiques et medicales Elsevier SAS.
Resumo:
Suspended particulate matter (SPM) measurements obtained along a cross-section in the central English Channel (Wight-Cotentin transect) indicate that the area may be differentiated into: (1) an English coastal zone, associated with the highest concentrations; (2) a French coastal zone, with intermediate concentrations; and (3) the offshore waters of the Channel, characterised by a very low suspended-sediment load. The SPM particle-size distribution was modal close to the English coast (main mode 10-12 mu m); the remainder of the area was characterised by flat SPM distributions. Examination of the diatom communities in the SPM suggest:; that material resuspended in the intertidal zone and the estuarine environments was advected towards the offshore waters of the English Channel. Considerable variations in SPM concentrations occurred during a tidal cycle: maximum concentrations were sometimes up to 3 times higher than the minimum concentrations, Empirical orthogonal function (EOF) analysis of the SPM concentration time series indicates that, although the bottom waters were more turbid than the surficial waters, this was not likely to be the result of in situ sediment resuspension. Instead, the observed variations appear to be controlled mainly by advective mechanisms. The limited resuspension was probably caused by: (1) the limited availability of fine-grained material within the bottom sediments, and (2) 'bed-armouring' processes which protect the finer-grained fractions of the seabed material from erosion and entrainment within the overlying flow during the less energetic stages of the tide.
Resumo:
The four leading tidal constituents M-2, S-2, K-1 and O-1 in the South China Sea are simulated by using POM. The model is forced with tide-generating potential and four leading tidal constituents at the open boundary. In order to simulate more exactly, TOPEX/Poseidon altimeter data are assimilated into the model and the open boundary is optimized. The computed co-tidal charts for M-2 and K-1 constituents are generally consistent with previous results in this region. The numerical simulation shows that energetic internal tides are generated over the bottom topography such as the Dongsha Islands, the Xisha Islands, the Zhongsha Islands, the Nansba Islands and the Luzon Strait.
Resumo:
The mean sea surface heights (sea surface topography) of the South China, East China, Yellow and Bohai Seas are derived from an ocean general circulation model and surface air pressure. The circulation model covers the global oceans, with fine grid (1/6degrees) covering the East Asian marginal seas and coarse grid (31) covering the rest part of the global oceans. The result shows that the China 1985 National Altitude Datum is 24.7 cm above the me-an sea surface height of the world oceans. The mean sea surface in the coastal ocean adjacent to China is higher in the south than in the north. Intercomparison of the model results with the geodetic leveling measurements at 28 coastal tidal stations shows a standard deviation of 4.8 cm and a fitting coefficient of 95.3%. After correction through linear regression, the standard deviation is reduced to 4.5 cm. This indicates that the accuracy of model results is sufficient for practical application. Based on the model results, the mean sea surface heights for the study area with a resolution of 1/6 degree are given. This result also links the mean sea levels at islands with those on the mainland coast and gives the mean sea surface heights at tidal stations in the Taiwan Island, the Dongsha Islands, the Yisha Islands and the Nansha Islands relative to the China 1985 National Altitude Datum.
Resumo:
An analysis of the water level and current data taken in Qiongzhou Strait in the South China Sea (SCS) over the last 37 years (1963 to 1999) was made to examine the characteristics of tidal waves and residual flow through the strait and their roles in the seasonal variation of the SCS circulation. The observations reveal that Qiongzhou Strait is an area where opposing tidal waves interact and a source of water transport to the Gulf of Beibu (Gulf of Tonkin), SCS. A year-round westward mean flow with a maximum speed of 10-40 cm s(-1) is found in Qiongzhou Strait. This accounts for water transport of 0.2-0.4 Sv and 0.1-0.2 Sv into the Gulf of Beibu in winter-spring and summer-autumn, respectively. The outflow from Qiongzhou Strait may cause up to 44% of the gulf water to be refreshed each season, suggesting that it has a significant impact on the seasonal circulation in the Gulf of Beibu. This finding is in contrast to our current understanding that the seasonal circulation patterns in the South China Sea are primarily driven by seasonal winds. Several numerical experiments were conducted to examine the physical mechanisms responsible for the formation of the westward mean flow in Qiongzhou Strait. The model provides a reasonable simulation of semidiurnal and diurnal tidal waves in the strait and the predicted residual flow generally agrees with the observed mean flow. An analysis of the momentum equations indicates that the strong westward flow is driven mainly by tidal rectification over variable bottom topography. Both observations and modeling suggest that the coastal physical processes associated with tidal rectification and buoyancy input must be taken into account when the mass balance of the SCS circulation is investigated, especially for the regional circulation in the Gulf of Beibu.
Resumo:
Based on the Estuarine, Coastal and Ocean Modeling System with Sediments (ECOMSED) model, a 3-D hydrodynamic-transport numerical model was established for the offshore area near the Yangtze Estuary in the East China Sea. The hydrodynamic module was driven by tide and wind. Sediment module included sediment resuspension, transport and deposition of cohesive and non-cohesive sediment. The settling of cohesive sediment in the water column was modeled as a function of aggregation (flocculation) and deposition. The numerical results were compared with observation data for August, 2006. It shows that the sediment concentration reduces gradually from the seashore to the offshore area. Numerical results of concentration time series in the observation stations show two peaks and two valleys, according with the observation data. It is mainly affected by tidal current. The suspended sediment concentration is related to the tidal current during a tidal cycle, and the maximum concentration appears 1 h-4 h after the current maximum velocity has reached.
Resumo:
MASNUM wave-tide-circulation coupled numerical model (MASNUM coupled model, hereinafter) is developed based on the Princeton Ocean Model (POM). Both POM and MASNUM coupled model are applied in the numerical simulation of the upwelling off Yangtze River estuary and in Zhejiang coastal waters in summer. The upwelling mechanisms are analyzed from the viewpoint of tide, and a new mechanism is proposed. The study suggests that the tidally inducing mechanism of the upwelling includes two dynamic aspects: the barotropic and the baroclinic process. On the one hand, the residual currents induced by barotropic tides converge near the seabed, and upwelling is generated to maintain mass conservation. The climbing of the residual currents along the sea bottom slope also contributes to the upwelling. On the other hand, tidal mixing plays a very important role in inducing the upwelling in the baroclinic sea circumstances. Strong tidal mixing leads to conspicuous front in the coastal waters. The considerable horizontal density gradient across the front elicits a secondary circulation clinging to the tidal front, and the upwelling branch appears near the frontal zone. Numerical experiments are designed to determine the importance of tide in inducing the upwelling. The results indicate that tide is a key and dominant inducement of the upwelling. Experiments also show that coupling calculation of the four main tidal constituents(M-2, S-2, K-1, and O-1), rather than dealing with the single M-2 constituent, improves the modeling precision of the barotropic tide-induced upwelling.
Resumo:
The South China Sea (SCS) is one of the most active areas of internal waves. We undertook a program of physical oceanography in the northern South China Sea from June to July of 2009, and conducted a 1-day observation from 15:40 of June 24 to 16:40 of June 25 using a chain of instruments, including temperature sensors, pressure sensors and temperature-pressure meters at a site (117.5A degrees E, 21A degrees N) northeast of the Dongsha Islands. We measured fluctuating tidal and subtidal properties with the thermistor-chain and a ship-mounted Acoustic Doppler Current Profiler, and observed a large-amplitude nonlinear internal wave passing the site followed by a number of small ones. To further investigate this phenomenon, we collected the tidal constituents from the TPXO7.1 dataset to evaluate the tidal characteristics at and around the recording site, from which we knew that the amplitude of the nonlinear internal wave was about 120 m and the period about 20 min. The horizontal and vertical velocities induced by the soliton were approximately 2 m/s and 0.5 m/s, respectively. This soliton occurred 2-3 days after a spring tide.
Resumo:
To study the relationship between sediment transportation and saltwater intrusion in the Changjiang (Yangtze) estuary, a three-dimensional numerical model for temperature, salinity, velocity field, and suspended sediment concentration was established based on the ECOMSED model. Using this model, sediment transportation in the flood season of 2005 was simulated for the Changjiang estuary. A comparison between simulated results and observation data for the tidal level, flow velocity and direction, salinity and suspended sediment concentration indicated that they were consistent in overall. Based on model verification, the simulation of saltwater intrusion and its effect on sediment in the Changjiang estuary was analyzed in detail. The saltwater intrusion in the estuary including the formation, evolution, and disappearance of saltwater wedge and the induced vertical circulation were reproduced, and the crucial impact of the wedge on cohesive and non-cohesive suspended sediment distribution and transportation were successfully simulated. The result shows that near the salinity front, the simulated concentrations of both cohesive and non-cohesive suspended sediment at the surface layer had a strong relationship with the simulated velocity, especially when considering a 1-hour lag. However, in the bottom layer, there was no obvious correlation between them, because the saltwater wedge and its inducing vertical circulation may have resuspended loose sediment on the bed, thus forming a high-concentration area near the bottom even if the velocity near the bottom was very low during the transition phase from flood to ebb.
Resumo:
Based on in-situ time series data from the acoustic Doppler current profiler (ADCP) and thermistor chain in Wenchang area, a sequence of internal solitary wave (ISW) packets was observed in September 2005, propagating northwest on the continental shelf of the northwestern South China Sea (SCS). Corresponding to different stratification of the water column and tidal condition, both elevation and depression ISWs were observed at the same mooring location with amplitude of 35 m and 25 m respectively in different days. Regular arrival of the remarkable ISW packets at approximately the diurnal tidal period and the dominance of diurnal internal waves in the study area, strongly suggest that the main energy source of the waves is the diurnal tide. Notice that the wave packets were all riding on the troughs and shoulders of the internal tides, they were probably generated locally from the shelf break by the evolution of the internal tides due to nonlinear and dispersive effects.