991 resultados para Thermal light


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Context.LS 5039 has been observed with several X-ray instruments so far showing quite steady emission in the long term and no signatures of accretion disk. The source also presents X-ray variability at orbital timescales in flux and photon index. The system harbors an O-type main sequence star with moderate mass-loss. At present, the link between the X-rays and the stellar wind is unclear. Aims.We study the X-ray fluxes, spectra, and absorption properties of LS 5039 at apastron and periastron passages during an epoch of enhanced stellar mass-loss, and the long term evolution of the latter in connection with the X-ray fluxes. Methods.New XMM-Newton observations were performed around periastron and apastron passages in September 2005, when the stellar wind activity was apparently higher. April 2005 Chandra observations on LS 5039 were revisited. Moreover, a compilation of H EW data obtained since 1992, from which the stellar mass-loss evolution can be approximately inferred, was carried out. Results.XMM-Newton observations show higher and harder emission around apastron than around periastron. No signatures of thermal emission or a reflection iron line indicating the presence of an accretion disk are found in the spectrum, and the hydrogen column density () is compatible with being the same in both observations and consistent with the interstellar value. 2005 Chandra observations show a hard X-ray spectrum, and possibly high fluxes, although pileup effects preclude conclusive results from being obtained. The H EW shows yearly variations of 10%, and does not seem to be correlated with X-ray fluxes obtained at similar phases, unlike what is expected in the wind accretion scenario. Conclusions.2005 XMM-Newton and Chandra observations are consistent with 2003 RXTE/PCA results, namely moderate flux and spectral variability at different orbital phases. The constancy of the seems to imply that either the X-ray emitter is located at 1012 cm from the compact object, or the density in the system is 3 to 27 times smaller than that predicted by a spherical symmetric wind model. We suggest that the multiwavelength non-thermal emission of LS 5039 is related to the observed extended radio jets and is unlikely to be produced inside the binary system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phytochromes are red/far-red photosensors that regulate numerous developmental programs in plants. Among them, phytochrome A (phyA) is essential to enable seedling de-etiolation under continuous far-red (FR) light, a condition that mimics the environment under a dense canopy. The ecological relevance of this response is demonstrated by the high mortality rate of phyA mutant plants that germinate in deep vegetational shade. phyA signaling involves direct interaction of the photoreceptor with phytochrome-interacting factors PIF1 and PIF3, members of the bHLH transcription factor family. Here we investigated the involvement of PIF4 and PIF5 in phyA signaling, and found that they redundantly control de-etiolation in FR light. The pif4 pif5 double mutant is hypersensitive to low fluence rates of FR light. This phenotype is dependent on FR light perception by phyA, but does not rely on alterations in the phyA level. Our microarray analysis shows that PIF4 and PIF5 are part of an inhibitory mechanism that represses the expression of some light-responsive genes in the dark, and that they are also needed for full expression of several growth-related genes in the light. Unlike PIF1 and PIF3, PIF4 and PIF5 are not degraded in response to FR light, indicating that they are light-regulated by a different mechanism. Our genetic analysis suggests that this is achieved through sequestration of these PIFs by the closely related bHLH transcription factor HFR1 (long hypocotyl in FR light).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD44 is the major cell-surface receptor for hyaluronan, which is implicated in cell-cell and cell-matrix adhesion, cell migration, and signaling. Studies have shown that CD44-dependent migration requires CD44 to be shed from the cell surface and that matrix metalloproteinase-mediated cleavage may provide an underlying mechanism. However, the full spectrum of proteases that may participate in CD44 shedding has yet to be defined. In this issue, Anderegg et al. demonstrate that ADAM10, but not ADAM17 or MMP14, mediates constitutive shedding of CD44 in human melanoma cells and that knockdown of ADAM10 blocks the antiproliferative activity of the soluble proteolytic cleavage product of CD44.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The OLS estimator of the intergenerational earnings correlation is biased towards zero, while the instrumental variables estimator is biased upwards. The first of these results arises because of measurement error, while the latter rests on the presumption that the education of the parent family is an invalid instrument. We propose a panel data framework for quantifying the asymptotic biases of these estimators, as well as a mis-specification test for the IV estimator. [Author]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cytoskeleton (CSK) is a nonequilibrium polymer network that uses hydrolyzable sources of free energy such as adenosine triphosphate (ATP) to remodel its internal structure. As in inert nonequilibrium soft materials, CSK remodeling has been associated with structural rearrangements driven by energy-activated processes. We carry out particle tracking and traction microscopy measurements of alveolar epithelial cells at various temperatures and ATP concentrations. We provide the first experimental evidence that the remodeling dynamics of the CSK is driven by structural rearrangements over free-energy barriers induced by thermally activated forces mediated by ATP. The measured activation energy of these forces is ~40kBTr (kB being the Boltzmann constant and Tr being the room temperature). Our experiments provide clues to understand the analogy between the dynamics of the living CSK and that of inert nonequilibrium soft materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal analysis, powder diffraction, and Raman scattering as a function of the temperature were carried out on K2BeF4. Moreover, the crystal structure was determined at 293 K from powder diffraction. The compound shows a transition from Pna21 to Pnam space group at 921 K with a transition enthalpy of 5 kJ/mol. The transition is assumed to be first order because the compound shows metastability. Structurally and spectroscopically the transition is similar to those observed in (NH4)2SO4, which suggests that the low-temperature phase is ferroelectric. In order to confirm it, the spontaneous polarization has been computed using an ionic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual case of localized amyloid light-chain (AL) amyloidosis and extramedullary plasmacytoma of the mitral valve is described. The worsening of a mitral regurgitation led to investigations and surgery. The valve presented marked distortion and thickening by type AL amyloid associated with a monotypic CD138+ immunoglobulin lambda plasma cell proliferation. Systemic staging showed a normal bone marrow and no evidence of amyloid deposition in other localizations. The patient's outcome after mitral valve replacement was excellent. To our knowledge, this is the first description of a localized AL amyloidosis as well as of a primary extramedullary plasmacytoma of the mitral valve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the study and modeling of the structural and optical properties of rib-loaded waveguides working in the 600-900-nm spectral range. A Si nanocrystal (Si-nc) rich SiO2 layer with nominal Si excess ranging from 10% to 20% was produced by quadrupole ion implantation of Si into thermal SiO2 formed on a silicon substrate. Si-ncs were precipitated by annealing at 1100°C, forming a 0.4-um-thick core layer in the waveguide. The Si content, the Si-nc density and size, the Si-nc emission, and the active layer effective refractive index were determined by dedicated experiments using x-ray photoelectron spectroscopy, Raman spectroscopy, energy-filtered transmission electron microscopy, photoluminescence and m-lines spectroscopy. Rib-loaded waveguides were fabricated by photolithographic and reactive ion etching processes, with patterned rib widths ranging from 1¿to¿8¿¿m. Light propagation in the waveguide was observed and losses of 11dB/cm at 633 and 780 nm were measured, modeled and interpreted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an extensive study of the structural and optical emission properties in aluminum silicates and soda-lime silicates codoped with Si nanoclusters (Si-nc) and Er. Si excess of 5 and 15¿at.¿% and Er concentrations ranging from 2×1019 up to 6×1020¿cm¿3 were introduced by ion implantation. Thermal treatments at different temperatures were carried out before and after Er implantation. Structural characterization of the resulting structures was performed to obtain the layer composition and the size distribution of Si clusters. A comprehensive study has been carried out of the light emission as a function of the matrix characteristics, Si and Er contents, excitation wavelength, and power. Er emission at 1540¿nm has been detected in all coimplanted glasses, with similar intensities. We estimated lifetimes ranging from 2.5¿to¿12¿ms (depending on the Er dose and Si excess) and an effective excitation cross section of about 1×10¿17¿cm2 at low fluxes that decreases at high pump power. By quantifying the amount of Er ions excited through Si-nc we find a fraction of 10% of the total Er concentration. Upconversion coefficients of about 3×10¿18¿cm¿3¿s¿1 have been found for soda-lime glasses and one order of magnitude lower in aluminum silicates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a thermal modeling for power management of a new three-dimensional (3-D) thinned dies stacking process. Besides the high concentration of power dissipating sources, which is the direct consequence of the very interesting integration efficiency increase, this new ultra-compact packaging technology can suffer of the poor thermal conductivity (about 700 times smaller than silicon one) of the benzocyclobutene (BCB) used as both adhesive and planarization layers in each level of the stack. Thermal simulation was conducted using three-dimensional (3-D) FEM tool to analyze the specific behaviors in such stacked structure and to optimize the design rules. This study first describes the heat transfer limitation through the vertical path by examining particularly the case of the high dissipating sources under small area. First results of characterization in transient regime by means of dedicated test device mounted in single level structure are presented. For the design optimization, the thermal draining capabilities of a copper grid or full copper plate embedded in the intermediate layer of stacked structure are evaluated as a function of the technological parameters and the physical properties. It is shown an interest for the transverse heat extraction under the buffer devices dissipating most the power and generally localized in the peripheral zone, and for the temperature uniformization, by heat spreading mechanism, in the localized regions where the attachment of the thin die is altered. Finally, all conclusions of this analysis are used for the quantitative projections of the thermal performance of a first demonstrator based on a three-levels stacking structure for space application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High quantum efficiency erbium doped silicon nanocluster (Si-NC:Er) light emitting diodes (LEDs) were grown by low-pressure chemical vapor deposition (LPCVD) in a complementary metal-oxide-semiconductor (CMOS) line. Erbium (Er) excitation mechanisms under direct current (DC) and bipolar pulsed electrical injection were studied in a broad range of excitation voltages and frequencies. Under DC excitation, Fowler-Nordheim tunneling of electrons is mediated by Er-related trap states and electroluminescence originates from impact excitation of Er ions. When the bipolar pulsed electrical injection is used, the electron transport and Er excitation mechanism change. Sequential injection of electrons and holes into silicon nanoclusters takes place and nonradiative energy transfer to Er ions is observed. This mechanism occurs in a range of lower driving voltages than those observed in DC and injection frequencies higher than the Er emission rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential for application of silicon nitride-based light sources to general lighting is reported. The mechanism of current injection and transport in silicon nitride layers and silicon oxide tunnel layers is determined by electro-optical characterization of both bi- and tri-layers. It is shown that red luminescence is due to bipolar injection by direct tunneling, whereas Poole-Frenkel ionization is responsible for blue-green emission. The emission appears warm white to the eye, and the technology has potential for large-area lighting devices. A photometric study, including color rendering, color quality and luminous efficacy of radiation, measured under various AC excitation conditions, is given for a spectrum deemed promising for lighting. A correlated color temperature of 4800K was obtained using a 35% duty cycle of the AC excitation signal. Under these conditions, values for general color rendering index of 93 and luminous efficacy of radiation of 112 lm/W are demonstrated. This proof of concept demonstrates that mature silicon technology, which is extendable to lowcost, large-area lamps, can be used for general lighting purposes. Once the external quantum efficiency is improved to exceed 10%, this technique could be competitive with other energy-efficient solid-state lighting options. ©2011 Optical Society of America OCIS codes: (230.2090) Electro-optical devices; (150.2950) Illumination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a electroluminescence (EL) study of the Si-rich silicon oxide (SRSO) LEDs with and without Er3+ ions under different polarization schemes: direct current (DC) and pulsed voltage (PV). The power efficiency of the devices and their main optical limitations are presented. We show that under PV polarization scheme, the devices achieve one order of magnitude superior performance in comparison with DC. Time-resolved measurements have shown that this enhancement is met only for active layers in which annealing temperature is high enough (>1000 ◦C) for silicon nanocrystal (Si-nc) formation. Modeling of the system with rate equations has been done and excitation cross-sections for both Si-nc and Er3+ ions have been extracted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas numerical modeling using finite-element methods (FEM) can provide transient temperature distribution in the component with enough accuracy, it is of the most importance the development of compact dynamic thermal models that can be used for electrothermal simulation. While in most cases single power sources are considered, here we focus on the simultaneous presence of multiple sources. The thermal model will be in the form of a thermal impedance matrix containing the thermal impedance transfer functions between two arbitrary ports. Eachindividual transfer function element ( ) is obtained from the analysis of the thermal temperature transient at node ¿ ¿ after a power step at node ¿ .¿ Different options for multiexponential transient analysis are detailed and compared. Among the options explored, small thermal models can be obtained by constrained nonlinear least squares (NLSQ) methods if the order is selected properly using validation signals. The methods are applied to the extraction of dynamic compact thermal models for a new ultrathin chip stack technology (UTCS).