922 resultados para Tetroxide-catalyzed Oxidation
Resumo:
This work describes the application of partial least squares (PLS) regression to variables that represent the oxidation data of several types of secondary metabolite isolated from the family Asteraceae. The oxidation states were calculated for each carbon atom of the involved compounds after these had been matched with their biogenetic precursor. The states of oxidation variations were named oxidation steps. This methodology represents a new approach to inspect the oxidative changes in taxa. Partial least square (PLS) regression was used to inspect the relationships among terpenoids, cournarins, polyacetylenes, and flavonoids from a data base containing approximately 27,000 botanical entries. The results show an interdependence between the average oxidation states of each class of secondary metabolite at tribe and sub tribe levels.
Resumo:
Tungsten carbide, WC, has shown dissimilar thermal behavior when it is heated on changeable heating rate and flow of oxidant atmosphere. The oxidation of WC to WO3 tends to be in a single and slow kinetic step on slow heating rate and/or low flux of air. Kinetic parameters, on non-isothermal condition, could be evaluated to the oxidation of WC to heating rate below 15 degrees C min(-1) or low flow of air (10 mL min(-1)). The reaction is governed by nucleation and growth at 5 to 10 degrees C min(-1) then the tendency is to be autocatalytic, JMA and SB, respectively.
Resumo:
This study answers several pending questions about alumina-catalyzed epoxidation with aqueous 70 wt% H2O2. To evaluate the effect of the water-to-aluminum tri-sec-butoxide molar ratio, this was systematically changed from 1 to 24. The xerogels were calcined at 450 degrees C and gave different gamma-Al2O3's with distinct textural and acidic properties. A combination of Al-27 MAS NMR and TPD-NH3 results of calcined aluminas allowed us to assign the type la. Al-OH sites as the catalytic sites for epoxidation. The type Ib Al-OH sites have no function in catalytic epoxidation, because ethyl acetate poisons these sites. The strong acid sites of types IIa, IIb, and III Al-OH groups are responsible for the undesired H2O2 decomposition and decreased oxidant selectivity. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Pt-modified SnO2 electrodes were prepared onto titanium substrates in the form of thin films of similar to2 mum at different temperatures in the range from 200 to 400degreesC. Surface morphology was examined by scanning electron microscopy (SEM). It was found that Pt-SnO2 sol-gel layers are significantly rough and have a low porosity. X-ray diffraction (XRD) studies showed that the films consist of Pt nanoparticles with average size varying from about 5 to 10 nm, depending on the preparation temperature, and amorphous tin oxide. X-ray photoelectron spectroscopy (XPS) was employed to determine the superficial composition of the electrodes and demonstrated the presence of Sn4+ in all the samples. XPS spectra of the Pt 4f electrons showed the presence of Pt in the zero-valence state as well as in ionic forms. The general electrochemical behavior was characterized by cyclic voltammetry in 1 mol l(-1) HClO4 and the electrocatalytic activity towards the oxidation of formaldehyde was investigated by potential sweeps and chronoamperometry. The results obtained show that the Pt-SnO2/Ti system exhibits a significant catalytic activity for the oxidation of formaldehyde, with an onset potential below 0.1 V. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The hydrolysis of TMOS in oxalic acid catalyzed reacting TMOS-water mixtures, under ultrasound stimulation, was studied by fitting a simplified dissolution and reaction modeling for samples, the hydrolysis rate of which had been measured in a previous work. The reaction pathway represented in a ternary diagram shows a heterogeneous step for the reaction which gradually progresses until complete homogenization of the system. Besides the water dissolved due to the homogenizing effect of the alcohol, ultrasound maintains a virtual and additional dissolution of water located at the interface between the TMOS and water during the heterogeneous step of the reaction. The mean radius of the heterogeneity represented by water dispersed in TMOS was evaluated as around 150 Angstrom. The oxalic acid concentration accordingly increases the hydrolysis rate constant but its fundamental role on the solubility of water in TMOS could not unequivocally be established.
Resumo:
About similar to 2.1 x 10(-3) Mol SiO2 cm(-3) and similar to 88%-volume liquid-phase silica wet gels were prepared from oxalic-acid-catalyzed tetraethoxysilane (TEOS) sonohydrolysis. Aerogels were obtained by supercritical CO2 extraction. The samples were analyzed by thermogravimetry, small-angle X-ray scattering and nitrogen adsorption. Wet gels can be described as mass fractal structures with fractal dimension D similar to 1.94 and structural characteristic length zeta changing between similar to 3.3 to similar to 3.0 nm in the studied range of the catalyst concentration. A fraction of the porosity is apparently eliminated in the supercritical process. The values of the BET specific surface S-BET, the total pore volume V-p and the mean pore size l(p) of the aerogels were found to change almost randomly around the mean values S-BET = 874 m(2) g(-1), V-p = 0.961 cm(3) g(-1) and l(p) = 4.4 nm with catalyst concentration variation. These values were not substantially different from those from an equivalent HCl-catalyzed aerogel. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
Primaquine, an antimalarial drug, presents a well-defined oxidation peak around +0.6V vs SCE at a glassy carbon electrode that can be used for its determination. Calibration graphs were obtained for primaquine in B-R buffer pH 4.0 from 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using linear-scan voltammetry and 3.00 x 10(-5) mol L-1 to 1.00 x 10(-2) mol L-1 using differential pulse or square-wave voltammetry. The correspondent detection limits was 9.4 mu g mL(-1); 4.2 and 1.8 mu g mL(-1), respectively. All the voltammetric methods were applied with success in direct determination of the primaquine in commercial tablets without separation or extraction procedures.
Resumo:
The ability of photoelectrocatalytic oxidation to degrade the commercially important copper-plitalocyanine dye, remazol turquoise blue 15 (RTB) was investigated. The best experimental condition was optimized, evaluating the performance of Ti/TiO2 thin-film electrodes prepared by sol-gel method in the decolourization of 32 mg L-1 RTB dye in 0.5 mol L-1 Na2SO4 pH 8 and applied potential of +1.5 V versus SCE under UV irradiation. Spectrophotometric measurements, high performance liquid chromatography, dissolved organic carbon (TOC) evaluation and stripping analysis of yielding solution obtained after 3 h of photoelectrolysis leads to 100% of absorbance removal from wavelength of 250-800 nm, 79.6% of TOC reduction and the releasing of up to 54.6% dye-bound copper (0.85 mg L-1) into the solution. Both, original and oxidized dye solution did not presented mutagenic activity with the strains TA98 and WOO of Salmonella in the presence and absence of S9 mix at the tested doses. Nevertheless, the yielding photoelectrocatalytic oxidized solution showed an increase in the acute toxicity for Vibrio fischeri bacteria, explained by copper liberation during treatment. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In this work, the oxidizing action of a native strain type A. ferrooxidans on a sulphide containing a predominance of arsenopyrite and pyrite has been evaluated. Incubation of the A. ferrooxidans strain in flasks containing 200 mL of T&K medium with the ore (particle size of 106 mu m) at pulp density 8% (w/v) at 35 degrees C on a rotary shaker at 200 rpm resulted in preferential oxidation of the arsenopyrite and the mobilization of 88% of the arsenic in 25 days. Mineralogical characterization of the residue after biooxidation was carried out with FTIR. XRD and SEM/XEDS techniques. An in situ oxidation of the arsenopyrite is suggested on the basis of the frequent appearance of jarosite pseudomorph replacing arsenopyrite, in which the transformations Fe(2+) -> Fe(3+), S(-2) -> S(+6) and As(-1) -> As(+3) -> As(+5) occur for the most part without formation of soluble intermediates, resulting in a type of jarosite that typically contains high concentrations of arsenic (type A-jarosite). However, during pyrite oxidation, dissolution of the constituent Fe and S predominates, which is evidenced by corrosion of pyrite particles with formation of pits, generating a type of jarosite with high quantities of K (type B-jarosite). Lastly, a third type of jarosite (type C-jarosite) also precipitated forming a thin film that covered the grains of pyrite principally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pentacarbonyliron was oxidized with H2O2, in organic solvents, to give colloidal sols. The aqueous-ethanolic sol is highly stable and undergoes thermally-reversible coagulation. Its solid phase was found to be a non-crystalline Fe (III) hydroxoacetate which is transformed to α-Fe2O3 when heated to 300°C. Iron-bound acetate groups are assumed to have a major role in the sol stability, by preserving the amorphous solid phase. Dry hydroxoacetate particles were heated under vacuum; scanning electron microscopy revealed that these particles coalesce and grow, as in a sintering process but at low temperatures (100-250°). © 1987.
Resumo:
The acid catalyzed and ultrasound stimulated hydrolysis of solventless tetraethoxysilane-water mixtures was studied at 39°C as a function of HCl added to the mixtures (log[HCl]-1 ranged from 0.8 to 2.0), The reaction was carried out in a specially designed device, in which a steady state heat flow is maintained, while sonication is taking place, if no reaction is expected to occur. The exothermal hydrolysis reaction causes an increasing temperature (ΔTt) as a function of the reaction time, t. The isothermal hydrolysis rate constant, k, has been evaluated from the experimental ΔTt versus t data, after corrections for the increasing temperature effects, by using a method resulting from our theoretical modeling based on a dissolution and reaction mechanism. The hydrolysis rate constant fits closely a k α [H+] law as expected for this kind of hydrogen-ion catalyzed reaction.