982 resultados para Temporal structure
Resumo:
Plant toxins are substances produced and secreted by plants to defend themselves against predators. In a broad sense, this includes all substances that have a toxic effect on targeted organisms, whether they are microbes, other plants, insects, or higher animals. Plant toxins have a diverse range of structures, from small organic molecules through to proteins. This review gives an overview of the various classes of plant toxins but focuses on an interesting class of protein-based plant toxins containing a cystine knot motif. This structural motif confers exceptional stability on proteins containing it and is associated with a wide range of biological activities. The biological activities and structural stability offer many potential applications in the pharmaceutical and agricultural fields. One particularly exciting prospect is in the use of protein-based plant toxins as molecular scaffolds for displaying pharmaceutically important bioactivities. Future applications of plant toxins are likely to involve genetic engineering techniques and molecular pharming approaches.
Resumo:
CcmG is unlike other periplasmic thioredoxin (TRX)like proteins in that it has a specific reducing activity in an oxidizing environment and a high fidelity of interaction. These two unusual properties are required for its role in c-type cytochrome maturation. The crystal structure of CcmG reveals a modified TRX fold with an unusually acidic active site and a groove formed from two inserts in the fold. Deletion of one of the groove-forming inserts disrupts c-type cytochrome formation. Two unique structural features of CcmG-an acidic active site and an adjacent groove-appear to be necessary to convert an indiscriminately binding scaffold, the TRX fold, into a highly specific redox protein.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The effect of heat treatment on the structure of an Australian semi-anthracite char was studied in detail in the 850-1150degreesC temperature range using XRD, HRTEM, and electrical resistivity techniques. It was found that the carbon crystallite size in the char does not change significantly during heat treatment in the temperature range studied, for both the raw coal and its ash-free derivative obtained by acid treatment. However, the fraction of the organized carbon in the raw coal chars, determined by XRD, increased with increase of heat treatment time and temperature, while that for the ash-free coal chars remained almost unchanged. This suggests the occurrence of catalytic ordering during heat treatment, supported by the observation that the electrical resistivity of the raw coal chars decreased with heat treatment, while that of the ash-free coal chars did not vary significantly. Further confirmatory evidence was provided by high resolution transmission electron micrographs depicting well-organized carbon layers surrounding iron particles. It is also found that the fraction of organized carbon does not reach unity, but attains an apparent equilibrium value that increases with increase in temperature, providing an apparent heat of ordering of 71.7 kJ mol(-1) in the temperature range studied. Good temperature-independent correlation was found between the electrical resistivity and the organized carbon fraction, indicating that electrical resistivity is indeed structure sensitive. Good correlation was also found between the electrical resistivity and the reactivity of coal char. All these results strongly suggest that the thermal deactivation is the result of a crystallite-perfecting process, which is effectively catalyzed by the inorganic matter in the coal char. Based on kinetic interpretation of the data it is concluded that the process is diffusion controlled, most likely involving transport of iron in the inter-crystallite nanospaces in the temperature range studied. The activation energy of this transport process is found to be very low, at about 11.8 kJ mol(-1), which is corroborated by model-free correlation of the temporal variation of organized carbon fraction as well as electrical resistivity data using the superposition method, and is suggestive of surface transport of iron. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Spatial and temporal variability in wheat production in Australia is dominated by rainfall occurrence. The length of historical production records is inadequate, however, to analyse spatial and temporal patterns conclusively. In this study we used modelling and simulation to identify key spatial patterns in Australian wheat yield, identify groups of years in the historical record in which spatial patterns were similar, and examine association of those wheat yield year groups with indicators of the El Nino Southern Oscillation (ENSO). A simple stress index model was trained on 19 years of Australian Bureau of Statistics shire yield data (1975-93). The model was then used to simulate shire yield from 1901 to 1999 for all wheat-producing shires. Principal components analysis was used to determine the dominating spatial relationships in wheat yield among shires. Six major components of spatial variability were found. Five of these represented near spatially independent zones across the Australian wheatbelt that demonstrated coherent temporal (annual) variability in wheat yield. A second orthogonal component was required to explain the temporal variation in New South Wales. The principal component scores were used to identify high- and low-yielding years in each zone. Year type groupings identified in this way were tested for association with indicators of ENSO. Significant associations were found for all zones in the Australian wheatbelt. Associations were as strong or stronger when ENSO indicators preceding the wheat season (April-May phases of the Southern Oscillation Index) were used rather than indicators based on classification during the wheat season. Although this association suggests an obvious role for seasonal climate forecasting in national wheat crop forecasting, the discriminatory power of the ENSO indicators, although significant, was not strong. By examining the historical years forming the wheat yield analog sets within each zone, it may be possible to identify novel climate system or ocean-atmosphere features that may be causal and, hence, most useful in improving seasonal forecasting schemes.
Resumo:
Sperm ultrastructure is described for the nudibranch gastropod Cadlinella ornatissima, type species of the genus Cadlinella (Thiele). Although C. ornatissima exhibits most of the sperm features characteristic of other Opisthobranchia and the Pulmonata (a small, rounded acrosomal vesicle, a complex, helical, mitochondrial derivative - partially paracrystalline, coarse fibres associated with the axoneme), it also possesses a number of previously undescribed and possibly unique features (a longitudinally inrolled acrosomal pedestal, an axial structure within the cavity of the acrosomal pedestal, an electron-dense collar at the anterior region of the acrosomal pedestal, the presence of crystalloid bodies within the glycogen helices of the mitochondrial derivative). To our knowledge this is the first report of crystalloid bodies in mature sperm of any mollusc. Collectively this evidence raises questions concerning the affinities and systematic position of Cadlinella within the Nudibranchia. The peculiar nature of the sperm differences, in comparison with other investigated nudibranchs, suggest that Cadlinella is not easily linked to either the Cadlinidae or Chromodorididae, and should be considered incertae sedis.
Resumo:
The alpha-conotoxin MII is a 16 amino acid long peptide toxin isolated from the marine snail, Conus magus. This toxin has been found to be a highly selective and potent inhibitor of neuronal nicotinic acetylcholine receptors of the subtype alpha3beta2. To improve the bioavailability of this peptide, we have coupled to the N-terminus of conotoxin MII, 2-amino-D,L-dodecanoic acid (Laa) creating a lipidic linear peptide which was then successfully oxidised to produce the correctly folded conotoxin MII construct.
Resumo:
NMR spectroscopy and simulated annealing calculations have been used to determine the three-dimensional structure of NaD1, a novel antifungal and insecticidal protein isolated from the flowers of Nicotiana alata. NaD1 is a basic, cysteine-rich protein of 47 residues and is the first example of a plant defensin from flowers to be characterized structurally. Its three-dimensional structure consists of an a-helix and a triple-stranded anti-parallel beta-sheet that are stabilized by four intramolecular disulfide bonds. NaD1 features all the characteristics of the cysteine-stabilized up motif that has been described for a variety of proteins of differing functions ranging from antibacterial insect defensins and ion channel-perturbing scorpion toxins to an elicitor of the sweet taste response. The protein is biologically active against insect pests, which makes it a potential candidate for use in crop protection. NaD1 shares 31% sequence identity with alfAFP, an antifungal protein from alfalfa that confers resistance to a fungal pathogen in transgenic potatoes. The structure of NaD1 was used to obtain a homology model of alfAFP, since NaD1 has the highest level of sequence identity with alfAFP of any structurally characterized antifungal defensin. The structures of NaD1 and alfAFP were used in conjunction with structure - activity data for the radish defensin Rs-AFP2 to provide an insight into structure-function relationships. In particular, a putative effector site was identified in the structure of NaD1 and in the corresponding homology model of alfAFP. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
The extracellular loop 3 (ECL3) of the mammalian gonadotropin-releasing hormone receptor (GnRH-R) contains an acidic amino acid (Glu(301) in the mouse GnRH-R,) that confers agonist selectivity for Are in mammalian GnRH. It is proposed that a specific conformation of ECL3 is necessary to orientate the carboxyl side chain of the acidic residue for interaction with Arg(8) of GnRH, which is supported by decreased affinity for Arg(8) GnRH but not Gln(8) GnRH when an adjacent Pro is mutated to Ala. To probe the structural contribution of the loop domain to the proposed presentation of the carboxyl side chain, we synthesized a model peptide (CGPEMLNRVSEPGC) representing residues 293-302 of mouse ECL3, where Cys and Gly residues are added symmetrically at the N and C termini, respectively, allowing the introduction of a disulfide bridge to simulate the distances at which the ECL3 is tethered to the transmembrane domains 6 and 7 of the receptor. The ability of the ECL3 peptide to bind GnRH with low affinity was demonstrated by its inhibition of GnRH stimulation of inositol phosphate production in cells expressing the GnRH-R. The CD bands of the ECL3 peptides exhibited a superposition of predominantly unordered structure and partial contributions from beta-sheet structure. Likewise, the analysis of the amide I and amide III bands from micro-Raman and FT Raman experiments revealed mainly unordered conformations of the cyclic and of the linear peptide. NMR data demonstrated the presence of a beta-hairpin among an ensemble of largely disordered structures in the cyclic peptide. The location of the turn linking the two strands of the hairpin was assigned to the three central residues L-296, N-297, and R-298. A small population of structured species among an ensemble of predominantly random coil conformation suggests that the unliganded receptor represents a variety of structural conformers, some of which have the potential to make contacts with the ligand. We propose a mechanism of receptor activation whereby binding of the agonist to the inactive receptor state induces and stabilizes a particular structural state of the loop domain, leading to further conformational rearrangements across the transmembrane domain and signal propagating interaction with G proteins. Interaction of the Glu(301) of the receptor with Arg(8) of GnRH induces a folded configuration of the ligand. Our proposal thus suggests that conformational changes of both ligand and receptor result from this interaction.
Resumo:
In mammals, prolonged immobilization of the limbs can result in a loss of capillary tortuosity, resulting in skeletal muscle haemorrhaging if rapid remobilization is permitted. In this study, we examined the effect of 4 months' immobilization on semimembranosus capillary structure in the Green-striped burrowing frog, Cyclorana alboguttata. C alboguttata routinely aestivates as part of a physiological strategy to avoid desiccation in semi-arid environments and, in this capacity, the hindlimbs of C alboguttata are immobilized in a cocoon for months at a time. We found that 4 months' aestivation had no effect on three-dimensional capillary structure in the semimembranosus muscle and that capillary tortuosity is preserved in immobilized C. alboguttata. The preservation of capillary structure in the hindlimb muscles of C alboguttata in part accounts for their remarkable ability to emerge with a fully competent locomotor system after prolonged immobilization.
Resumo:
Although the co-ordination of promotive root-sourced cytokinin (CK) and inhibitory shoot apex-sourced auxin (IAA) is central to all current models on lateral bud dormancy release, control by those hormones alone has appeared inadequate in many studies. Thus it was hypothesized that the IAA : CK model is the central control but that it must be considered within the relevant timeframe leading to lateral bud release and against a backdrop of interactions with other hormone groups. Therefore, IAA and a wide survey of cytokinins (CKs), were examined along with abscisic acid (ABA) and polyamines (PAs) in released buds, tissue surrounding buds and xylem sap at 1 and 4 h after apex removal, when lateral buds of chickpea are known to break dormancy. Three potential lateral bud growth inhibitors, IAA, ABA and cis-zeatin 9-riboside (ZR), declined sharply in the released buds and xylem following decapitation. This is in contrast to potential dormancy breaking CKs like trans-ZR and trans-zeantin 9-riboside 5'phosphate (ZRMP), which represented the strongest correlative changes by increasing 3.5-fold in xylem sap and 22-fold in buds. PAs had not changed significantly in buds or other tissues after 4 h, so they were not directly involved in the breaking of bud dormancy. Results from the xylem and surrounding tissues indicated that bud CK increases resulted from a combination synthesis in the bud and selective loading of CK nucleotides into the xylem from the root.
Resumo:
Trichogramma australicum larvae develop most rapidly in younger eggs of its host, the pest lepidopteran Helicoverpa armigera . To establish how the developmental stage of the host affects the diet of T. australicum , larvae were fixed in situ in eggs of H. armigera of different ages and the structure of the egg contents and parasitoid gut contents examined histologically. Larvae feeding on newly laid host eggs contain primarily yolk particles in their gut, while larvae feeding on older hosts contain necrotic cells and yolk particles. The gut of T. australicum larvae does not contain organised tissue remnants, indicating that larvae feed primarily by sucking food into their pharynx and feed best on a mixture of particulate semisolids in a liquid matrix. Secretory structures of T. australicum larvae that could be involved in modifying the host environment were examined. The hindgut is modified to form an anal vesicle with a number of attributes suggesting that it may be a specialised secretory structure. The paired salivary glands open to the exterior via a common duct.
Resumo:
A suite of allenic hydrocarbons, previously unknown as a molecular class from insects, has been characterized from several Australian melolonthine scarab beetles. The allenes are represented by the formula CH3(CH2)nCH=.=CH(CH2)(7)CH3 with n being 11-15, 17 and 19, and thus, all have Delta(9,10)-unsaturation. These structures have been confirmed by syntheses and comparisons of spectral and chromatographic properties with those of the natural components. The enantiomers of (+/-)-Delta(9,10)-tricosadiene and Delta(9,10)-pentacosadiene were separable on a modified beta-cyclodextrin column (gas chromatography), and the natural Delta(9,10)-tricosadiene (n = 11) and Delta(9,10)-pentacosadiene (n = 13) were shown to be of >85% ee. Syntheses of nonracemic allenes of known predominating chirality were acquired using both organotin chemistry and sulfonylhydrazine intermediates, and comparisons then demonstrated that the natural allenes were predominantly (R)-configured.