955 resultados para Teaching method


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most common techniques for stress analysis/strength prediction of adhesive joints involve analytical or numerical methods such as the Finite Element Method (FEM). However, the Boundary Element Method (BEM) is an alternative numerical technique that has been successfully applied for the solution of a wide variety of engineering problems. This work evaluates the applicability of the boundary elem ent code BEASY as a design tool to analyze adhesive joints. The linearity of peak shear and peel stresses with the applied displacement is studied and compared between BEASY and the analytical model of Frostig et al., considering a bonded single-lap joint under tensile loading. The BEM results are also compared with FEM in terms of stress distributions. To evaluate the mesh convergence of BEASY, the influence of the mesh refinement on peak shear and peel stress distributions is assessed. Joint stress predictions are carried out numerically in BEASY and ABAQUS®, and analytically by the models of Volkersen, Goland, and Reissner and Frostig et al. The failure loads for each model are compared with experimental results. The preparation, processing, and mesh creation times are compared for all models. BEASY results presented a good agreement with the conventional methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adhesive bonding is nowadays a serious candidate to replace methods such as fastening or riveting, because of attractive mechanical properties. As a result, adhesives are being increasingly used in industries such as the automotive, aerospace and construction. Thus, it is highly important to predict the strength of bonded joints to assess the feasibility of joining during the fabrication process of components (e.g. due to complex geometries) or for repairing purposes. This work studies the tensile behaviour of adhesive joints between aluminium adherends considering different values of adherend thickness (h) and the double-cantilever beam (DCB) test. The experimental work consists of the definition of the tensile fracture toughness (GIC) for the different joint configurations. A conventional fracture characterization method was used, together with a J-integral approach, that take into account the plasticity effects occurring in the adhesive layer. An optical measurement method is used for the evaluation of crack tip opening and adherends rotation at the crack tip during the test, supported by a Matlab® sub-routine for the automated extraction of these quantities. As output of this work, a comparative evaluation between bonded systems with different values of adherend thickness is carried out and complete fracture data is provided in tension for the subsequent strength prediction of joints with identical conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A retrospective survey of 473 cases of snake bite admitted to a Brazilian teaching hospital from 1984 to 1990 revealed 91 cases of bite without envenoming and/or caused by non-venomous snakes. In 17 of these cases the snake was identified, and one patient was bitten by a snake-like reptile (Amphisbaena mertensii). In 43 cases diagnosis was made on clinical grounds (fang marks in the absence of signs of envenoming). The other 30 cases were of patients who complained of being bitten but who did not show any sign of envenoming or fang mark. Most cases occurred in men (66;73%), in the 10-19 years age group (26;29%), in the lower limbs (51/74;69%), between 6 A. M. and 2 P.M. (49;61%) and in the month of April (16; 18%). One patient bitten by Philodryas olfersii developed severe local pain, swelling and redness at the site of the bite, with normal clotting time. The patient bitten by Drymarcon corais was misdiagnosed as being bitten by a snake of the genus Bothrops, was given the specific antivenom, and developed anaphylaxis. One patient bitten by Sibynomorphus mikanii presented prolonged clotting time, and was also given antivenom as a case of Bothrops bite. Correct identification of venomous snakes by physicians is necessary to provide correct treatment to victims of snake bite, avoiding unnecessary distress to the patient, and overprescription of antivenom, which may eventually cause severe untoward effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bending of simply supported composite plates is analyzed using a direct collocation meshless numerical method. In order to optimize node distribution the Direct MultiSearch (DMS) for multi-objective optimization method is applied. In addition, the method optimizes the shape parameter in radial basis functions. The optimization algorithm was able to find good solutions for a large variety of nodes distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multiobjective approach for optimization of passive damping for vibration reduction in sandwich structures is presented in this paper. Constrained optimization is conducted for maximization of modal loss factors and minimization of weight of sandwich beams and plates with elastic laminated constraining layers and a viscoelastic core, with layer thickness and material and laminate layer ply orientation angles as design variables. The problem is solved using the Direct MultiSearch (DMS) solver for derivative-free multiobjective optimization and solutions are compared with alternative ones obtained using genetic algorithms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Performance evaluation increasingly assumes a more important role in any organizational environment. In the transport area, the drivers are the company’s image and for this reason it is important to develop and increase their performance and commitment to the company goals. This evaluation can be used to motivate driver to improve their performance and to discover training needs. This work aims to create a performance appraisal evaluation model of the drivers based on the multi-criteria decision aid methodology. The MMASSI (Multicriteria Methodology to Support Selection of Information Systems) methodology was adapted by using a template supporting the evaluation according to the freight transportation company in study. The evaluation process involved all drivers (collaborators being evaluated), their supervisors and the company management. The final output is a ranking of the drivers, based on their performance, for each one of the scenarios used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Remote hyperspectral sensors collect large amounts of data per flight usually with low spatial resolution. It is known that the bandwidth connection between the satellite/airborne platform and the ground station is reduced, thus a compression onboard method is desirable to reduce the amount of data to be transmitted. This paper presents a parallel implementation of an compressive sensing method, called parallel hyperspectral coded aperture (P-HYCA), for graphics processing units (GPU) using the compute unified device architecture (CUDA). This method takes into account two main properties of hyperspectral dataset, namely the high correlation existing among the spectral bands and the generally low number of endmembers needed to explain the data, which largely reduces the number of measurements necessary to correctly reconstruct the original data. Experimental results conducted using synthetic and real hyperspectral datasets on two different GPU architectures by NVIDIA: GeForce GTX 590 and GeForce GTX TITAN, reveal that the use of GPUs can provide real-time compressive sensing performance. The achieved speedup is up to 20 times when compared with the processing time of HYCA running on one core of the Intel i7-2600 CPU (3.4GHz), with 16 Gbyte memory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O projeto, financiado pelo Programa Aprendizagem ao Longo da Vida, decorreu entre 1 de agosto de 2011 e 31 de julho de 2013 e foi coordenado pelo Instituto de Administração Pública de Praga, tendo como parceiros a Escola de Economia e Direito de Berlim, a Escola Nacional de Administração Pública da Polónia e o INA, de Portugal. A coordenação portuguesa do estudo esteve a cargo da Prof. Doutora Helena Rato e da Dra. Matilde Gago, com a colaboração do Prof. Doutor César Madureira e da Dra. Margarida Quintela, ex investigadores do INA, atualmente na DGAEP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The choice of an information systems is a critical factor of success in an organization's performance, since, by involving multiple decision-makers, with often conflicting objectives, several alternatives with aggressive marketing, makes it particularly complex by the scope of a consensus. The main objective of this work is to make the analysis and selection of a information system to support the school management, pedagogical and administrative components, using a multicriteria decision aid system – MMASSITI – Multicriteria Method- ology to Support the Selection of Information Systems/Information Technologies – integrates a multicriteria model that seeks to provide a systematic approach in the process of choice of Information Systems, able to produce sustained recommendations concerning the decision scope. Its application to a case study has identi- fied the relevant factors in the selection process of school educational and management information system and get a solution that allows the decision maker’ to compare the quality of the various alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main problems of hyperspectral data analysis is the presence of mixed pixels due to the low spatial resolution of such images. Linear spectral unmixing aims at inferring pure spectral signatures and their fractions at each pixel of the scene. The huge data volumes acquired by hyperspectral sensors put stringent requirements on processing and unmixing methods. This letter proposes an efficient implementation of the method called simplex identification via split augmented Lagrangian (SISAL) which exploits the graphics processing unit (GPU) architecture at low level using Compute Unified Device Architecture. SISAL aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The proposed implementation is performed in a pixel-by-pixel fashion using coalesced accesses to memory and exploiting shared memory to store temporary data. Furthermore, the kernels have been optimized to minimize the threads divergence, therefore achieving high GPU occupancy. The experimental results obtained for the simulated and real hyperspectral data sets reveal speedups up to 49 times, which demonstrates that the GPU implementation can significantly accelerate the method's execution over big data sets while maintaining the methods accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parallel hyperspectral unmixing problem is considered in this paper. A semisupervised approach is developed under the linear mixture model, where the abundance's physical constraints are taken into account. The proposed approach relies on the increasing availability of spectral libraries of materials measured on the ground instead of resorting to endmember extraction methods. Since Libraries are potentially very large and hyperspectral datasets are of high dimensionality a parallel implementation in a pixel-by-pixel fashion is derived to properly exploits the graphics processing units (GPU) architecture at low level, thus taking full advantage of the computational power of GPUs. Experimental results obtained for real hyperspectral datasets reveal significant speedup factors, up to 164 times, with regards to optimized serial implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many Hyperspectral imagery applications require a response in real time or near-real time. To meet this requirement this paper proposes a parallel unmixing method developed for graphics processing units (GPU). This method is based on the vertex component analysis (VCA), which is a geometrical based method highly parallelizable. VCA is a very fast and accurate method that extracts endmember signatures from large hyperspectral datasets without the use of any a priori knowledge about the constituent spectra. Experimental results obtained for simulated and real hyperspectral datasets reveal considerable acceleration factors, up to 24 times.