996 resultados para Task Conflict
Resumo:
Cognitive and neurophysiological correlates of arithmetic calculation, concepts, and applications were examined in 41 adolescents, ages 12-15 years. Psychological and task-related EEG measures which correctly distinguished children who scored low vs. high (using a median split) in each arithmetic subarea were interpreted as indicative of processes involved. Calculation was related to visual-motor sequencing, spatial visualization, theta activity measured during visual-perceptual and verbal tasks at right- and left-hemisphere locations, and right-hemisphere alpha activity measured during a verbal task. Performance on arithmetic word problems was related to spatial visualization and perception, vocabulary, and right-hemisphere alpha activity measured during a verbal task. Results suggest a complex interplay of spatial and sequential operations in arithmetic performance, consistent with processing model concepts of lateralized brain function.
Victimhood Status and Public Attitudes Towards Post Conflict Agreements:The Case of Northern Ireland
Resumo:
Task-based dataflow programming models and runtimes emerge as promising candidates for programming multicore and manycore architectures. These programming models analyze dynamically task dependencies at runtime and schedule independent tasks concurrently to the processing elements. In such models, cache locality, which is critical for performance, becomes more challenging in the presence of fine-grain tasks, and in architectures with many simple cores.
This paper presents a combined hardware-software approach to improve cache locality and offer better performance is terms of execution time and energy in the memory system. We propose the explicit bulk prefetcher (EBP) and epoch-based cache management (ECM) to help runtimes prefetch task data and guide the replacement decisions in caches. The runtimem software can use this hardware support to expose its internal knowledge about the tasks to the architecture and achieve more efficient task-based execution. Our combined scheme outperforms HW-only prefetchers and state-of-the-art replacement policies, improves performance by an average of 17%, generates on average 26% fewer L2 misses, and consumes on average 28% less energy in the components of the memory system.
Resumo:
Task dataflow languages simplify the specification of parallel programs by dynamically detecting and enforcing dependencies between tasks. These languages are, however, often restricted to a single level of parallelism. This language design is reflected in the runtime system, where a master thread explicitly generates a task graph and worker threads execute ready tasks and wake-up their dependents. Such an approach is incompatible with state-of-the-art schedulers such as the Cilk scheduler, that minimize the creation of idle tasks (work-first principle) and place all task creation and scheduling off the critical path. This paper proposes an extension to the Cilk scheduler in order to reconcile task dependencies with the work-first principle. We discuss the impact of task dependencies on the properties of the Cilk scheduler. Furthermore, we propose a low-overhead ticket-based technique for dependency tracking and enforcement at the object level. Our scheduler also supports renaming of objects in order to increase task-level parallelism. Renaming is implemented using versioned objects, a new type of hyper object. Experimental evaluation shows that the unified scheduler is as efficient as the Cilk scheduler when tasks have no dependencies. Moreover, the unified scheduler is more efficient than SMPSS, a particular implementation of a task dataflow language.