995 resultados para TRANSFER EFFICIENCIES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional theory (DFT) calculations were employed to explore the gas-sensing mechanisms of zinc oxide (ZnO) with surface reconstruction taken into consideration. Mix-terminated (10 (1) over bar0) ZnO surfaces were examined. By simulating the adsorption process of various gases, i.e., H-2, NH3, CO, and ethanol (C2H5OH) gases, on the ZnO (10 (1) over bar0) surface, the changes of configuration and electronic structure were compared. Based on these calculations, two gas-sensing mechanisms were proposed and revealed that both surface reconstruction and charge transfer result in a change of electronic conductance of ZnO. Also, the calculations were compared with existing experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The heat transfer characteristics of China no. 3 kerosene were investigated experimentally and analytically under conditions relevant to a regenerative cooling system for scramjet applications. A test facility developed for the present study can handle kerosene in a temperature range of 300-1000 K, a pressure range of 2.6-5 MPa, and a mass How rate range of 10-100 g/s. In addition, the test section was uniquely designed such that both the wall temperature and the bulk fuel temperature were measured at the same location along the flowpath. The measured temperature distributions were then used to analytically deduce the local heat transfer characteristics. A 10-component kerosene surrogate was proposed and employed to calculate the fuel thermodynamic and transport properties that were required in the heat transfer analysis. Results revealed drastic changes in the fuel flow properties and heat transfer characteristics when kerosene approached its critical state. Convective heat transfer enhancement was also found as kerosene became supercritical. The heat transfer correlation in the relatively low-fuel-temperature region yielded a similar result to other commonly used jet fuels, such as JP-7 and JP-8, at compressed liquid states. In the high-fuel-temperature region, near and beyond the critical temperature, heat transfer enhancement was observed; hence, the associated correlation showed a more significant Reynolds number dependency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pool boiling of degassed FC-72 on a plane plate heater has been studied experimentally in microgravity. A quasi-steady heating method is adopted, in which the heating voltage is controlled to increase exponentially with time. Compared with terrestrial experiments, bubble behaviors are very different, and have direct effect on heat transfer. Small, primary bubbles attached on the surface seem to be able to suppress the activation of the cavities in the neighborhoods, resulting in a slow increase of the wall temperature with the heat flux. For the high subcooling, the coalesced bubble has a smooth surface and a small size. It is difficult to cover the whole heater surface, resulting in a special region of gradual transitional boiling in which nucleate boiling and local dry area can co-exist. No turning point corresponding to the transition from nucleate boiling to film boiling can be observed. On the contrary, the surface oscillation of the coalesced bubble at low subcooling may cause more activated nucleate sites, and then the surface temperature may keep constant or even fall down with the increasing heat flux. Furthermore, an abrupt transition to film boiling can also be observed. It is shown that heat transfer coefficient and CHF increase with the subcooling or pressure in microgravity, as observed in normal gravity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For efficiently cooling electronic components with high heat flux, experiments were conducted to study the flow boiling heat transfer performance of FC-72 over square silicon chips with the dimensions of 10 × 10 × 0.5 mm3. Four kinds of micro-pin-fins with the dimensions of 30 × 60, 30 × 120, 50 × 60, 50 × 120 μm2 (thickness, t × height, h) were fabricated on the chip surfaces by the dry etching technique for enhancing boiling heat transfer. A smooth surface was also tested for comparison. The experiments were made at three different fluid velocities (0.5, 1 and 2 m/s) and three different liquid subcoolings (15, 25 and 35 K). The results were compared with the previous published data of pool boiling. All micro-pin-fined surfaces show a considerable heat transfer enhancement compared with a smooth surface. Flow boiling can remarkably decrease wall superheat compared with pool boiling. At the velocities lower than 1 m/s, the micro-pin-finned surfaces show a sharp increase in heat flux with increasing wall superheat. For all surfaces, the maximum allowable heat flux, qmax, for the normal operation of LSI chips increases with fluid velocity and subcooling. For all micro-pin-finned surfaces, the wall temperature at the critical heat flux (CHF) is less than the upper limit for the reliable operation of LSI chips, 85◦C. The largest value of qmax can reach nearly 148 W/cm2 for micro-pin-finned chips with the fin height of 120 μm at the fluid velocity of 2 m/s and the liquid subcooling of 35 K. The perspectives for the boiling heat transfer experiment of the prospective micro-pin-finned sur- faces, which has been planned to be made in the Drop Tower Beijing/NMLC in the future, are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Researches on two-phase flow and pool boiling heat transfer in microgravity, which included groundbased tests, flight experiments, and theoretical analyses, were conducted in the National Microgravity Laboratory/CAS. A semi-theoretical Weber number model was proposed to predict the slug-to-annular flow transition of two-phase gas–liquid flows in microgravity, while the influence of the initial bubble size on the bubble-to-slug flow transition was investigated numerically using the Monte Carlo method. Two-phase flow pattern maps in microgravity were obtained in the experiments both aboard the Russian space station Mir and aboard IL-76 reduced gravity airplane. Mini-scale modeling was also used to simulate the behavior of microgravity two-phase flow on the ground. Pressure drops of two-phase flow in microgravity were also measured experimentally and correlated successfully based on its characteristics. Two space experiments on pool boiling phenomena in microgravity were performed aboard the Chinese recoverable satellites. Steady pool boiling of R113 on a thin wire with a temperature-controlled heating method was studied aboard RS-22, while quasi-steady pool boiling of FC-72 on a plate was studied aboard SJ-8. Ground-based experiments were also performed both in normal gravity and in short-term microgravity in the drop tower Beijing. Only slight enhancement of heat transfer was observed in the wire case, while enhancement in low heat flux and deterioration in high heat flux were observed in the plate case. Lateral motions of vapor bubbles were observed before their departure in microgravity. The relationship between bubble behavior and heat transfer on plate was analyzed. A semi-theoretical model was also proposed for predicting the bubble departure diameter during pool boiling on wires. The results obtained here are intended to become a powerful aid for further investigation in the present discipline and development of two-phase systems for space applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In present study, effect of interfacial heat transfer with ambient gas on the onset of oscillatory convection in a liquid bridge of large Prandtl number on the ground is systematically investigated by the method of linear stability analyses. With both the constant and linear ambient air temperature distributions, the numerical results show that the interfacial heat transfer modifies the free-surface temperature distribution directly and then induces a steeper temperature gradient on the middle part of the free surface, which may destabilize the convection. On the other hand, the interfacial heat transfer restrains the temperature disturbances on the free surface, which may stabilize the convection. The two coupling effects result in a complex dependence of the stability property on the Biot number. Effects of melt free-surface deformation on the critical conditions of the oscillatory convection were also investigated. Moreover, to better understand the mechanism of the instabilities, rates of kinetic energy change and "thermal" energy change of the critical disturbances were investigated (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conventional aquaculture has been promoted in Nigeria for the past five decades with minimal impact on rural communities: from the findings of Maclearen (1949) where he popularized the use of culturable fish predators Lutjanus sp; Pomades sp; Tarpon adanticus; Chrysichthys nigrodigitatus in earthen ponds near Onikan-Lagos, Nigeria; to the finding of Zwilling, 1963, who reported common carp, Cyprinus carpio propagation and culture in Panyan Fish Farm, near Jos; to the findings of FAO, 1965, when the potential culture of marine mullets culture in brackish water ponds in Buguma, Rivers State was presented. The work of other researchers Sivalingam, (1970; 1973), Ezenwa (1976), development officers and extension officers contributed to the development of aquaculture in few rural areas of the country and informed on public and private owned fish farm infrastructures. Despite a moderate long history of aquaculture research and development in Nigeria, an annual production level of 25,000 metric tons was recorded in 1999. This situation calls for a more sustainable approach for a stronger link between aquaculture research and technology transfer for the development of rural communities of Nigeria. This paper therefore examines some of the issues involved in the continuous flow of the new aquaculture technology in the improvement of fish protein output, standard of living of rural farmers and prevention of urban migration by the youth

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A modelling study is performed to investigate the characteristics of both plasma flow and heat transfer of a laminar non-transferred arc argon plasma torch operated at atmospheric and reduced pressure. It is found that the calculated flow fields and temperature distributions are quite similar for both cases at a chamber pressure of 1.0 atm and 0.1 atm. A fully developed flow regime could be achieved in the arc constrictor-tube between the cathode and the anode of the plasma torch at 1.0 atm for all the flow rates covered in this study. However the flow field could not reach the fully developed regime at 0.1 atm with a higher flow rate. The arc-root is always attached to the torch anode surface near the upstream end of the anode, i.e. the abruptly expanded part of the torch channel, which is in consistence with experimental observation. The surrounding gas would be entrained from the torch exit into the torch interior due to a comparatively large inner diameter of the anode channel compared to that of the arc constrictor-tube.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Consider a sphere immersed in a rarefied monatomic gas with zero mean flow. The distribution function of the molecules at infinity is chosen to be a Maxwellian. The boundary condition at the body is diffuse reflection with perfect accommodation to the surface temperature. The microscopic flow of particles about the sphere is modeled kinetically by the Boltzmann equation with the Krook collision term. Appropriate normalizations in the near and far fields lead to a perturbation solution of the problem, expanded in terms of the ratio of body diameter to mean free path (inverse Knudsen number). The distribution function is found directly in each region, and intermediate matching is demonstrated. The heat transfer from the sphere is then calculated as an integral over this distribution function in the inner region. Final results indicate that the heat transfer may at first increase over its free flow value before falling to the continuum level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rates for A(e, e'p) on the nuclei ^2H, C, Fe, and Au have been measured at momentum transfers Q^2 = 1, 3, 5, and 6.8 (GeV fc)^2 . We extract the nuclear transparency T, a measure of the importance of final state interactions (FSI) between the outgoing proton and the recoil nucleus. Some calculations based on perturbative QCD predict an increase in T with momentum transfer, a phenomenon known as Color Transparency. No statistically significant rise is seen in the present experiment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The behavior of population transfer in an excited-doublet four-level system driven by linear polarized few-cycle ultrashort laser pulses is investigated numerically. It is shown that almost complete population transfer can be achieved even when the adiabatic criterion is not fulfilled. Moreover, the robustness of this scheme in terms of the Rabi frequencies and chirp rates of the pulses is explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Redox-active ruthenium complexes have been covalently attached to the surface of a series of natural, semisynthetic and recombinant cytochromes c. The protein derivatives were characterized by a variety of spectroscopic techniques. Distant Fe^(2+) - Ru^(3+) electronic couplings were extracted from intramolecular electron-transfer rates in Ru(bpy)_2(im)HisX (where X= 33, 39, 62, and 72) derivatives of cyt c. The couplings increase according to 62 (0.0060) < 72 (0.057) < 33 (0.097) < 39 (0.11 cm^(-1)); however, this order is incongruent with histidine to heme edge-edge distances [62 (14.8) > 39 (12.3) > 33 (11.1) > =72 (8.4 Å)]. These results suggest the chemical nature of the intervening medium needs to be considered for a more precise evaluation of couplings. The rates (and couplings) correlate with the lengths of a-tunneling pathways comprised of covalent bonds, hydrogen bonds and through-space jumps from the histidines to the heme group. Space jumps greatly decrease couplings: one from Pro71 to Met80 extends the σ-tunneling length of the His72 pathway by roughly 10 covalent bond units. Experimental couplings also correlate well with those calculated using extended Hiickel theory to evaluate the contribution of the intervening protein medium.

Two horse heart cyt c variants incorporating the unnatural amino acids (S)-2- amino-3-(2,2'-bipyrid-6-yl)-propanoic acid (6Bpa) and (S)-2-amino-3-(2,2'-bipyrid-4-yl)propanoic acid ( 4Bpa) at position 72 have been prepared using semisynthetic protocols. Negligible perturbation of the protein structure results from this introduction of unnatural amino acids. Redox-active Ru(2,2'-bipyridine)_2^(2+) binds to 4Bpa72 cyt c but not to the 6Bpa protein. Enhanced ET rates were observed in the Ru(bpy)_2^(2+)-modified 4Bpa72 cyt c relative to the analogous His72 derivative. The rapid (< 60 nanosecond) photogeneration of ferrous Ru-modified 4Bpa72 cyt c in the conformationally altered alkaline state demonstrates that laser-induced ET can be employed to study submicrosecond protein-folding events.