961 resultados para TISSUE-SPECIFIC STEM CELLS
Resumo:
Neural stem cells (NSC) are a valuable model system for understanding the intrinsic and extrinsic controls for self-renewal and differentiation choice. They also offer a platform for drug screening and neurotoxicity studies, and hold promise for cell replacement therapies for the treatment of neurodegenerative diseases. Fully exploiting the potential of this experimental tool often requires the manipulation of intrinsic cues of interest using transfection methods, to which NSC are relatively resistant. In this paper, we show that mouse and human NSC readily take up polystyrene-based microspheres which can be loaded with a range of chemical or biological cargoes. This uptake can take place in the undifferentiated stage without affecting NSC proliferation and their capacity to give rise to neurons and glia. We demonstrate that ß-galactosidase-loaded microspheres could be efficiently introduced into NSC with no apparent toxic effect, thus providing proof-of-concept for the use of microspheres as an alternative biomolecule delivery system.
Resumo:
Mouse embiyonic stem (ES) cells have the potential to differentiate into insulin-producing cells, but efficient protocols for in vitro differentiation have not been established. Here we have developed a new optimized four-stage differentiation protocol and compared this with an established reference protocol. The new protocol minimized differentiation towards neuronal progeny, resulting in a population of insulin-producing cells with ß-cell characteristics but lacking neuronal features. The yield of glucagon and somatostatin cells was negligible. Crucial for this improved yield was the removal of a nestin selection step as well as removal of culture supplements that promote differentiation towards the neuronal lineage. Supplementation of the differentiation medium with insulin and fetal calf serum was beneficial for differentiation towards monohor-monal insulin-positive cells. After implantation into diabetic mice these insulin-producing cells produced a time-dependent improvement of the diabetic metabolic state, in contrast to cells differentiated according to the reference protocol. Using a spinner culture instead of an adherent culture of ES cells prevented the differentiation towards insulin-producing cells. Thus, prevention of cell attachment in a spinner culture represents a means to keep ES cells in an undifferentiated state and to inhibit differentiation. In conclusion, this study describes a new optimized four-stage protocol for differentiating ES cells to insulin-producing cells with minimal neuronal cell formation. Copyright © 2008 Cognizant Comm. Corp.
Resumo:
Modification of human islets prior to transplantation may improve long-term clinical outcome in terms of diabetes management, by supporting graft function and reducing the potential for allo-rejection. Intragraft incorporation of stem cells secreting beta (β)-cell trophic and immunomodulatory factors represents a credible approach, but requires suitable culture methods to facilitate islet alteration without compromising integrity. This study employed a three-dimensional rotational cell culture system (RCCS) to achieve modification, preserve function, and ultimately influence immune cell responsiveness to human islets. Islets underwent intentional dispersal and rotational culture-assisted aggregation with amniotic epithelial cells (AEC) exhibiting intrinsic immunomodulatory potential. Reassembled islet constructs were assessed for functional integrity, and their ability to induce an allo-response in discrete T-cell subsets determined using mixed islet:lymphocyte reaction assays. RCCS supported the formation of islet:AEC aggregates with improved insulin secretory capacity compared to unmodified islets. Further, the allo-response of peripheral blood mononuclear cell (PBMC) and purified CD4+ and CD8+ T-cell subsets to AEC-bearing grafts was significantly (p < 0.05) attenuated. Rotational culture enables pre-transplant islet modification involving their integration with immunomodulatory stem cells capable of subduing the allo-reactivity of T cells relevant to islet rejection. The approach may play a role in achieving acute and long-term graft survival in islet transplantation.
Resumo:
Human mesenchymal stem cell (hMSC) therapies are currently progressing through clinical development, driving the need for consistent, and cost effective manufacturing processes to meet the lot-sizes required for commercial production. The use of animal-derived serum is common in hMSC culture but has many drawbacks such as limited supply, lot-to-lot variability, increased regulatory burden, possibility of pathogen transmission, and reduced scope for process optimization. These constraints may impact the development of a consistent large-scale process and therefore must be addressed. The aim of this work was therefore to run a pilot study in the systematic development of serum-free hMSC manufacturing process. Human bone-marrow derived hMSCs were expanded on fibronectin-coated, non-porous plastic microcarriers in 100mL stirred spinner flasks at a density of 3×105cells.mL-1 in serum-free medium. The hMSCs were successfully harvested by our recently-developed technique using animal-free enzymatic cell detachment accompanied by agitation followed by filtration to separate the hMSCs from microcarriers, with a post-harvest viability of 99.63±0.03%. The hMSCs were found to be in accordance with the ISCT characterization criteria and maintained hMSC outgrowth and colony-forming potential. The hMSCs were held in suspension post-harvest to simulate a typical pooling time for a scaled expansion process and cryopreserved in a serum-free vehicle solution using a controlled-rate freezing process. Post-thaw viability was 75.8±1.4% with a similar 3h attachment efficiency also observed, indicating successful hMSC recovery, and attachment. This approach therefore demonstrates that once an hMSC line and appropriate medium have been selected for production, multiple unit operations can be integrated to generate an animal component-free hMSC production process from expansion through to cryopreservation.
Resumo:
Mesenchymal stem cells (MSCs) stimulate angiogenesis within a wound environment and this effect is mediated through paracrine interactions with the endothelial cells present. Here we report that human MSC-conditioned medium (n=3 donors) significantly increased EaHy-926 endothelial cell adhesion and cell migration, but that this stimulatory effect was markedly donor-dependent. MALDI-TOF/TOF mass spectrometry demonstrated that whilst collagen type I and fibronectin were secreted by all of the MSC cultures, the small leucine rich proteoglycan, decorin was secreted only by the MSC culture that was least effective upon EaHy-926 cells. These individual extracellular matrix components were then tested as culture substrata. EaHy-926 cell adherence was greatest on fibronectin-coated surfaces with least adherence on decorin-coated surfaces. Scratch wound assays were used to examine cell migration. EaHy-926 cell scratch wound closure was quickest on substrates of fibronectin and slowest on decorin. However, EaHy-926 cell migration was stimulated by the addition of MSC-conditioned medium irrespective of the types of culture substrates. These data suggest that whilst the MSC secretome may generally be considered angiogenic, the composition of the secretome is variable and this variation probably contributes to donor-donor differences in activity. Hence, screening and optimizing MSC secretomes will improve the clinical effectiveness of pro-angiogenic MSC-based therapies.
Resumo:
Cell-based therapies have the potential to contribute to global healthcare, whereby the use of living cells and tissues can be used as medicinal therapies. Despite this potential, many challenges remain before the full value of this emerging field can be realized. The characterization of input material for cell-based therapy bioprocesses from multiple donors is necessary to identify and understand the potential implications of input variation on process development. In this work, we have characterized bone marrow derived human mesenchymal stem cells (BM-hMSCs) from multiple donors and discussed the implications of the measurable input variation on the development of autologous and allogeneic cell-based therapy manufacturing processes. The range of cumulative population doublings across the five BM-hMSC lines over 30 days of culture was 5.93, with an 18.2% range in colony forming efficiency at the end of the culture process and a 55.1% difference in the production of interleukin-6 between these cell lines. It has been demonstrated that this variation results in a range in the process time between these donor hMSC lines for a hypothetical product of over 13 days, creating potential batch timing issues when manufacturing products from multiple patients. All BM-hMSC donor lines demonstrated conformity to the ISCT criteria but showed a difference in cell morphology. Metabolite analysis showed that hMSCs from the different donors have a range in glucose consumption of 26.98 pmol cell−1 day−1, Lactate production of 29.45 pmol cell−1 day−1 and ammonium production of 1.35 pmol cell−1 day−1, demonstrating the extent of donor variability throughout the expansion process. Measuring informative product attributes during process development will facilitate progress towards consistent manufacturing processes, a critical step in the translation cell-based therapies.
Resumo:
Bone marrow-derived mesenchymal stem cells (BMSC) modulate inflammatory/immune responses and promote motor functional recovery after spinal cord injury (SCI). However, the effects of BMSC transplantation on central neuropathic pain and neuronal hyperexcitability after SCI remain elusive. This is of importance because BMSC-based therapies have been proposed for clinical treatment. We investigated the effects of BMSC transplantation on pain hypersensitivity in green fluorescent protein (GFP)-positive bone marrow-chimeric mice subjected to a contusion SCI, and the mechanisms of such effects. BMSC transplantation at day 3 post-SCI improved motor function and relieved SCI-induced hypersensitivities to mechanical and thermal stimulation. The pain improvements were mediated by suppression of protein kinase C-γ and phosphocyclic AMP response element binding protein expression in dorsal horn neurons. BMSC transplants significantly reduced levels of p-p38 mitogen-activated protein kinase and extracellular signal-regulated kinase (p-ERK1/2) in both hematogenous macrophages and resident microglia and significantly reduced the infiltration of CD11b and GFP double-positive hematogenous macrophages without decreasing the CD11b-positive and GFP-negative activated spinal-microglia population. BMSC transplants prevented hematogenous macrophages recruitment by restoration of the blood-spinal cord barrier (BSCB), which was associated with decreased levels of (a) inflammatory cytokines (tumor necrosis factor-α, interleukin-6); (b) mediators of early secondary vascular pathogenesis (matrix metallopeptidase 9); (c) macrophage recruiting factors (CCL2, CCL5, and CXCL10), but increased levels of a microglial stimulating factor (granulocyte-macrophage colony-stimulating factor). These findings support the use of BMSC transplants for SCI treatment. Furthermore, they suggest that BMSC reduce neuropathic pain through a variety of related mechanisms that include neuronal sparing and restoration of the disturbed BSCB, mediated through modulation of the activity of spinal-resident microglia and the activity and recruitment of hematogenous macrophages.
Resumo:
This paper reports on a research project which examined media coverage and audience perceptions of stem cells and stem cell research in Hungary, using focus groups and a media analysis. A background study was also conducted on the Hungarian legal, social and political situation linked to stem cell research, treatment and storage. Our data shows how stem cell research/treatments were framed by the focus group members in terms of medical results/cures and human interest stories – mirroring the dominant frames utilized by the Hungarian press. The spontaneous discourse on stem cells in the groups involved a non-political and non-controversial understanding – also echoing the dominant presentation of the media. Comparing our results with those of a UK study, we found that although there are some similarities, UK and Hungarian focus group participants framed the issue of stem cell research differently in many respects – and these differences often echoed the divergences of the media coverage in the two countries. We conclude by arguing against approaches which attribute only negligible influence to the media – especially in the case of complex scientific topics and when the dominant information source for the public is the media.
Resumo:
The environmental niche of the spermatogonial stem cell pool is critical to ensure the continued generation of the germ cell population. To study the consequences of an aberrant testicular environment in cryptorchidism we used a mouse model with a deletion of Rxfp2 gene resulting in a high intra-abdominal testicular position. Mutant males were infertile with the gross morphology of the cryptorchid testis progressively deteriorating with age. Few spermatogonia were identifiable in 12 month old cryptorchid testes. Gene expression analysis showed no difference between mutant and control testes at postnatal day 10. In three month old males a decrease in expression of spermatogonial stem cell (SSC) markers Id4, Nanos2, and Ret was shown. The direct counting of ID4+ cells supported a significant decrease of SSCs. In contrast, the expression of Plzf, a marker for undifferentiated and differentiating spermatogonia was not reduced, and the number of PLZF+ cells in the cryptorchid testis was higher in three month old testes, but equal to control in six month old mutants. The PLZF+ cells did not show a higher rate of apoptosis in cryptorchid testis. The expression of the Sertoli cell FGF2 gene required for SSC maintenance was significantly reduced in mutant testis. Based on these findings we propose that the deregulation of somatic and germ cell genes in the cryptorchid testis, directs the SSCs towards the differentiation pathway. This leads to a depletion of the SSC pool and an increase in the number of PLZF+ spermatogonial cells, which too, eventually decreases with the exhaustion of the stem cell pool. Such a dynamic suggests that an early correction of cryptorchidism is critical for the retention of the SSC pool.
Resumo:
Funding: The Scottish Government's Rural and Environment Science and Analytical Services Division.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.