767 resultados para TIG welding
Resumo:
The past decade has seen significant increases in combustion-generated ambient particles, which contain a nanosized fraction (less than 100 nm), and even greater increases have occurred in engineered nanoparticles (NPs) propelled by the booming nanotechnology industry. Although inhalation of these particulates has become a public health concern, human health effects and mechanisms of action for NPs are not well understood. Focusing on the human airway smooth muscle cell, here we show that the cellular mechanical function is altered by particulate exposure in a manner that is dependent upon particle material, size and dose. We used Alamar Blue assay to measure cell viability and optical magnetic twisting cytometry to measure cell stiffness and agonist-induced contractility. The eight particle species fell into four categories, based on their respective effect on cell viability and on mechanical function. Cell viability was impaired and cell contractility was decreased by (i) zinc oxide (40-100 nm and less than 44 microm) and copper(II) oxide (less than 50 nm); cell contractility was decreased by (ii) fluorescent polystyrene spheres (40 nm), increased by (iii) welding fumes and unchanged by (iv) diesel exhaust particles, titanium dioxide (25 nm) and copper(II) oxide (less than 5 microm), although in none of these cases was cell viability impaired. Treatment with hydrogen peroxide up to 500 microM did not alter viability or cell mechanics, suggesting that the particle effects are unlikely to be mediated by particle-generated reactive oxygen species. Our results highlight the susceptibility of cellular mechanical function to particulate exposures and suggest that direct exposure of the airway smooth muscle cells to particulates may initiate or aggravate respiratory diseases.
Resumo:
Laser tissue welding and soldering is being increasingly used in the clinical setting for defined surgical procedures. The exact induced changes responsible for tensile strength are not yet fully investigated. To further improve the strength of the bonding, a better understanding of the laser impact at the subcellular level is necessary. The goal of this study was to analyze whether the effect of laser irradiation on covalent bonding in pure collagen using irradiances typically applied for tissue soldering. Pure rabbit and equine type I collagen were subjected to laser irradiation. In the first part of the study, rabbit and equine collagen were compared using identical laser and irradiation settings. In the second part of the study, equine collagen was irradiated at increasing laser powers. Changes in covalent bonding were studied indirectly using the sodium dodecylsulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Tensile strengths of soldered membranes were measured with a calibrated tensile force gauge. In the first experiment, no differences between the species-specific collagen bands were noted, and no changes in banding were found on SDS-PAGE after laser irradiation. In the second experiment, increasing laser irradiation power showed no effect on collagen banding in SDS-PAGE. Finally, the laser tissue soldering of pure collagen membranes showed virtually no determinable tensile strength. Laser irradiation of pure collagen at typical power settings and exposure times generally used in laser tissue soldering does not induce covalent bonding between collagen molecules. This is true for both rabbit and equine collagen proveniences. Furthermore, soldering of pure collagen membranes without additional cellular components does not achieve the typical tensile strength reported in native, cell-rich tissues. This study is a first step in a better understanding of laser impact at the molecular level and might prove useful in engineering of combined collagen-soldering matrix membranes for special laser soldering applications.
Resumo:
OBJECTIVES: To analyse the results of recent studies not yet included in a 2003 report of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) on occupational exposure to low-frequency electromagnetic fields as potential risk factor for neurodegenerative diseases. METHODS: A literature search was conducted in the online databases of PubMed, ISI Web of Knowledge, DIMDI and COCHRANE, as well as in specialised databases and journals. Eight studies published between January 2000 and July 2005 were included in the review. RESULTS: The findings of these studies contribute to the evidence of an association between occupational magnetic field exposure and the risk of dementia. Regarding amyotrophic lateral sclerosis, the recent results confirm earlier observations of an association with electric and electronic work and welding. Its relationship with magnetic field exposure remains unsolved. There are only few findings pointing towards an association between magnetic field exposure and Parkinson's disease. CONCLUSIONS: The epidemiological evidence for an association between occupational exposure to low-frequency electromagnetic fields and the risk of dementia has increased during the last five years. The impact of potential confounders should be evaluated in further studies.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
The original objective of this project was to determine the effect of varying current intensity and electrode coating composition upon the spatter losses and porosity of arc welds made by alternating current. This subject was suggested by the Welding Research Council of the Engineering Foundation, which is a clearing house for welding research in order to avoid duplication of work.
Resumo:
Two sets of weld-test coupons, supposedly made under identical conditions, were submitted to this institution last year for approval and certification under the A.S.M.E. Welder's Qualification Code. The first set of coupons was unsatisfactory. The second set, made by the same operators one month later, was satisfactory.
Resumo:
In the modern aspect of powder metallurgy, the first use of a sintering process was in making filaments for incandescent electric lamps.In the short while from the day of Edison to the present, the science of working with metal powders has advanced by leaps and bounds.
Resumo:
In a relatively short period of sixty-five years, aluminum has grown to the rank of fifth in total weight of metals produced in the world. Throughout its short life, aluminum has been found to have excellent corrosion-resistant properties; yet only in recent years has aluminum been under consideration as a corrosion-resistant coating for iron and steel.
Resumo:
Sanidine separates from pumice of the early Miocene Peach Springs Tuff are concordantly dated at 18.5 ± 0.2 Ma by two isotopic techniques. The Peach Springs Tuff is the only known unit that can be correlated between isolated outcrops of Miocene strata from the central Mojave Desert of southeastern California to the western Colorado Plateau in Arizona, across five structural provinces, a distance of 350 km. Thus the age of the Peach Springs Tuff is important to structural and paleogeographic reconstructions of a large region. Biotite and sanidine separates from bulk samples of the Peach Springs Tuff from zones of welding and vapor-phase alteration have not produced consistent ages by the K-Ar method. Published ages of mineral separates from 17 localities ranged from 16.2 to 20.5 Ma. Discordant 40Ar/39Ar incremental release spectra were obtained for one biotite and two of the sanidine separates. Ages that correspond to the last gas increments are as old as 27 Ma. The 40Ar/39Ar incremental release determinations on sanidine separated from blocks of Peach Springs Tuff pumice yield ages of 18.3 ± 0.3 and 18.6 ± 0.4 Ma. Laser fusion measurements yield a mean age of 18.51 ± 0.10. The results suggest that sanidine and biotite K-Ar ages older than about 18.5 Ma are due to inherited Ar from pre-Tertiary contaminants, which likely were incorporated into the tuff during deposition. Sanidine K-Ar ages younger than 18 Ma probably indicate incomplete extraction of radiogenic 40Ar, whereas laser fusion dates of biotite and hornblende younger than 18 Ma likely are due to postdepositional alteration. Laser fusion ages as high as 19.01 Ma on biotite grains from pumice suggest that minerals from pre-Tertiary country rocks also were incorporated in the magma chamber.
Resumo:
Although conventional sediment parameters (mean grain size, sorting, and skewness) and provenance have typically been used to infer sediment transport pathways, most freshwater, brackish, and marine environments are also characterized by abundant sediment constituents of biological, and possibly anthropogenic and volcanic, origin that can provide additional insight into local sedimentary processes. The biota will be spatially distributed according to its response to environmental parameters such as water temperature, salinity, dissolved oxygen, organic carbon content, grain size, and intensity of currents and tidal flow, whereas the presence of anthropogenic and volcanic constituents will reflect proximity to source areas and whether they are fluvially- or aerially-transported. Because each of these constituents have a unique environmental signature, they are a more precise proxy for that source area than the conventional sedimentary process indicators. This San Francisco Bay Coastal System study demonstrates that by applying a multi-proxy approach, the primary sites of sediment transport can be identified. Many of these sites are far from where the constituents originated, showing that sediment transport is widespread in the region. Although not often used, identifying and interpreting the distribution of naturally-occurring and allochthonous biologic, anthropogenic, and volcanic sediment constituents is a powerful tool to aid in the investigation of sediment transport pathways in other coastal systems.
Resumo:
Uno de los retos actuales aún pendiente de lograr trabajando con espumas de aluminio, es el desarrollo de métodos de unión fácilmente reproducibles a nivel industrial que permitan la unión de espumas de aluminio entre sí o con otros componentes tipo pletinas, para así poder fabricar piezas de mayor tamaño o con formas complejas, a la vez que se conserven las propiedades y características principales de las espumas de aluminio, tanto en la zona principal de unión o cordón, como en la interfase y zona afectada térmicamente, que se encuentran anexa. Los actuales procesos de unión más utilizados con espumas de aluminio, se basan principalmente en adhesivos y uniones mecánicas. Estas soluciones a priori válidas, añaden problemas técnicos a determinadas aplicaciones de las espumas que frenan la completa integración de estos materiales en un entorno de fabricación flexible y global. Por esta razón, los actuales procesos de producción de las espumas de aluminio se restringen a determinadas ofertas hechas a la medida del cliente, no pudiendo atender por falta de soluciones, a una gran parte del potencial mercado de estos materiales. En el presente trabajo de investigación se han desarrollado y caracterizado diferentes métodos de unión de espumas de aluminio, en configuración a tope y de espumas de aluminio con pletinas en configuración a solape, basados en procesos por soldeo térmico. One of the current challenges even pending of being achieved working with aluminium foams, is the development of easily reproducible methods at industrial level that allow the joint of aluminium foams between them or with other elements as for example aluminium plates for making bigger pieces or with more complex forms, remaining simultaneously in the weld bead the properties and main characteristics of aluminium foam, so much in the joint area or interface, since in the affected closer thermal zone. Currently, the most used joint processes for applying to aluminium foams are based mainly on adhesives and mechanical joins. These solutions initially valid, add technical problems to certain aluminium foams applications, which stop the complete integration of these materials in a more flexible and global manufacture environment. For this reason, current aluminium foam manufacturing processes are restricted to certain offers done to a specific customer requirement, not being able to attend for lack of available solutions, to a great potential market of these materials. In the present work, different joint methods between aluminium foams and between aluminium foams and plates for butt and lap configurations have been developed and characterized based on thermal welding processes.
Resumo:
The geometrical factors defining an adhesive joint are of great importance as its design greatly conditions the performance of the bonding. One of the most relevant geometrical factors is the thickness of the adhesive as it decisively influences the mechanical properties of the bonding and has a clear economic impact on the manufacturing processes or long runs. The traditional mechanical joints (riveting, welding, etc.) are characterised by a predictable performance, and are very reliable in service conditions. Thus, structural adhesive joints will only be selected in industrial applications demanding mechanical requirements and adverse environmental conditions if the suitable reliability (the same or higher than the mechanical joints) is guaranteed. For this purpose, the objective of this paper is to analyse the influence of the adhesive thickness on the mechanical behaviour of the joint and, by means of a statistical analysis based on Weibull distribution, propose the optimum thickness for the adhesive combining the best mechanical performance and high reliability. This procedure, which is applicable without a great deal of difficulty to other joints and adhesives, provides a general use for a more reliable use of adhesive bondings and, therefore, for a better and wider use in the industrial manufacturing processes.