951 resultados para THREE-DIMENSIONAL SYSTEM


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Persian Gulf region is globally of great importance due to its economical and political reasons. The importance lies in oil sources and sea exports. Geophysical phenomena dominated in the water circulation affected this region is called Monsoon it stretches from African coasts to the half way of Red Seal affected all coasts of Persian Gulf and goes toward east to the Indian ocean. Other essential factors in the water circulation in this region are net evaporation (several meters in per year), high density and high salinity. In this article the effects of wind stress and evaporation in the water circulation in the region will be considered and model equations for wind forces, density, pressure, gradient, and bottom friction for Persian Gulf will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the construction of anatomically realistic three-dimensional in-silico breast phantoms with adjustable sizes, shapes and morphologic features. The concept of multiscale spatial resolution is implemented for generating breast tissue images from multiple modalities. Breast epidermal boundary and subcutaneous fat layer is generated by fitting an ellipsoid and 2nd degree polynomials to reconstructive surgical data and ultrasound imaging data. Intraglandular fat is simulated by randomly distributing and orienting adipose ellipsoids within a fibrous region immediately within the dermal layer. Cooper’s ligaments are simulated as fibrous ellipsoidal shells distributed within the subcutaneous fat layer. Individual ductal lobes are simulated following a random binary tree model which is generated based upon probabilistic branching conditions described by ramification matrices, as originally proposed by Bakic et al [3, 4]. The complete ductal structure of the breast is simulated from multiple lobes that extend from the base of the nipple and branch towards the chest wall. As lobe branching progresses, branches are reduced in height and radius and terminal branches are capped with spherical lobular clusters. Biophysical parameters are mapped onto the complete anatomical model and synthetic multimodal images (Mammography, Ultrasound, CT) are generated for phantoms of different adipose percentages (40%, 50%, 60%, and 70%) and are analytically compared with clinical examples. Results demonstrate that the in-silico breast phantom has applications in imaging performance evaluation and, specifically, great utility for solving image registration issues in multimodality imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hydro dynamical actions in big Lakes directly influence dynamic, physical and chemical affairs. The circulation's models and temperature have something to do with the movements of fluids, and analysis for circulation in Caspian sea is because of the lack of observation through which the circulations and out comings are determined. Through the studies, three dimensional simulations (Large- Scale) are planned and performed, according to Smolakiewicz and Margolin works. This is a non- hydrostatic and Boussinesq approximation is used in its formulation is used in its formulation on the basis of Lipps (1990) theorem and curve lines, the fluid is constant adiabatic and stratified, and the wind power is considered zero. The profile of speed according to previous depth and before ridge can be drawn on the basis of density available between northern and southern ridges. The circulation field is drawn from 3 cm/s to 13 cm/s on the plate z= 5 cm , the vertical changes of speed on the plate is 0.02 m/s. Vertical profile , horizontal speed in previous on, and after the ridges on are drawn on different spaces. It changes from 0.5 cm/s to 1 cm/s before ridges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although large-scale public hypermedia structures such as the World Wide Web are popularly referred to as "cyberspace", the extent to which they constitute a space in the everyday sense of the word is questionable. This paper reviews recent work in the area of three dimensional (3D) visualization of the Web that has attempted to depict it in the form of a recognizable space; in other words, as a navigable landscape that may be visibly populated by its users. Our review begins by introducing a range of visualizations that address different aspects of using the Web. These include visualizations of Web structure, especially of links, that act as 3D maps; browsing history; searches; evolution of the Web; and the presence and activities of multiple users. We then summarize the different techniques that are employed by these visualizations. We conclude with a discussion of key challenges for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research is based on a numerical model for forecasting the three-dimensional behavior of (sea) water motion due to the effect of a variable wind velocity. The results obtained are then analyzed and compared with observation. This model is based on the equations that overcome the current and distribution of temperature by applying the method of finite difference with assuming Δx, Δy as constant and Δz, variable. The model is based on the momentum equation, continuity equation and thermodynamic energy equation and tension at the surface and middle layers and bottom stress. The horizontal and vertical eddy viscosity and thermal diffusivity coefficients we used in accordance with that of the Bennet on Outario Lake (1977). Considering the Caspian Sea dimension in numerical model the Coriolis parameter used with β effects and the approximation Boussines have been used. For the program controlling some simple experiment with boundary condition similar to that of the Caspian Sea have been done. For modeling the Caspian Sea the grid of the field was done as follows: At horizontal surface grid size is 10×10km extension and at vertical in 10 layers with varying thickness from surface to bed respectively as: 5, 10, 20, 3, 50, 100, 150, 200, 25, 500 and higher. The data of wind as velocity، direction and temperature of water related to 15th September 1995 at 6،12 and 18 o’clock were obtained from synoptic station at the Caspian Sea shore and the research marine of Haji Alief. The information concerning shore wind was measured and by the method of SPM (shore protection manual) was transferred to far shore winds through interpolation and by use of inverse square distance of position distribution of the wind velocity at the Caspian surface field was obtained. The model has been evaluated according to the reports and observations. Through studying the position of the current in different layers، the velocity in the cross section in the northern، southern and the middle layers، will be discussed. The results reveal the presence of the circulation cells in the three above mentioned areas. The circulation with depth is reduced too. The results obtained through the numerical solution of the temperature equation have been compared with the observation. The temperature change in different layers in cross section illustrates the relative accordance of the model mentioned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of computer modeling has grown recently to integrate itself as an inseparable tool to experimental studies for the optimization of automotive engines and the development of future fuels. Traditionally, computer models rely on simplified global reaction steps to simulate the combustion and pollutant formation inside the internal combustion engine. With the current interest in advanced combustion modes and injection strategies, this approach depends on arbitrary adjustment of model parameters that could reduce credibility of the predictions. The purpose of this study is to enhance the combustion model of KIVA, a computational fluid dynamics code, by coupling its fluid mechanics solution with detailed kinetic reactions solved by the chemistry solver, CHEMKIN. As a result, an engine-friendly reaction mechanism for n-heptane was selected to simulate diesel oxidation. Each cell in the computational domain is considered as a perfectly-stirred reactor which undergoes adiabatic constant- volume combustion. The model was applied to an ideally-prepared homogeneous- charge compression-ignition combustion (HCCI) and direct injection (DI) diesel combustion. Ignition and combustion results show that the code successfully simulates the premixed HCCI scenario when compared to traditional combustion models. Direct injection cases, on the other hand, do not offer a reliable prediction mainly due to the lack of turbulent-mixing model, inherent in the perfectly-stirred reactor formulation. In addition, the model is sensitive to intake conditions and experimental uncertainties which require implementation of enhanced predictive tools. It is recommended that future improvements consider turbulent-mixing effects as well as optimization techniques to accurately simulate actual in-cylinder process with reduced computational cost. Furthermore, the model requires the extension of existing fuel oxidation mechanisms to include pollutant formation kinetics for emission control studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Prediction of soft tissue changes following orthognathic surgery has been frequently attempted in the past decades. It has gradually progressed from the classic “cut and paste” of photographs to the computer assisted 2D surgical prediction planning; and finally, comprehensive 3D surgical planning was introduced to help surgeons and patients to decide on the magnitude and direction of surgical movements as well as the type of surgery to be considered for the correction of facial dysmorphology. A wealth of experience was gained and numerous published literature is available which has augmented the knowledge of facial soft tissue behaviour and helped to improve the ability to closely simulate facial changes following orthognathic surgery. This was particularly noticed following the introduction of the three dimensional imaging into the medical research and clinical applications. Several approaches have been considered to mathematically predict soft tissue changes in three dimensions, following orthognathic surgery. The most common are the Finite element model and Mass tensor Model. These were developed into software packages which are currently used in clinical practice. In general, these methods produce an acceptable level of prediction accuracy of soft tissue changes following orthognathic surgery. Studies, however, have shown a limited prediction accuracy at specific regions of the face, in particular the areas around the lips. Aims The aim of this project is to conduct a comprehensive assessment of hard and soft tissue changes following orthognathic surgery and introduce a new method for prediction of facial soft tissue changes.   Methodology The study was carried out on the pre- and post-operative CBCT images of 100 patients who received their orthognathic surgery treatment at Glasgow dental hospital and school, Glasgow, UK. Three groups of patients were included in the analysis; patients who underwent Le Fort I maxillary advancement surgery; bilateral sagittal split mandibular advancement surgery or bimaxillary advancement surgery. A generic facial mesh was used to standardise the information obtained from individual patient’s facial image and Principal component analysis (PCA) was applied to interpolate the correlations between the skeletal surgical displacement and the resultant soft tissue changes. The identified relationship between hard tissue and soft tissue was then applied on a new set of preoperative 3D facial images and the predicted results were compared to the actual surgical changes measured from their post-operative 3D facial images. A set of validation studies was conducted. To include: • Comparison between voxel based registration and surface registration to analyse changes following orthognathic surgery. The results showed there was no statistically significant difference between the two methods. Voxel based registration, however, showed more reliability as it preserved the link between the soft tissue and skeletal structures of the face during the image registration process. Accordingly, voxel based registration was the method of choice for superimposition of the pre- and post-operative images. The result of this study was published in a refereed journal. • Direct DICOM slice landmarking; a novel technique to quantify the direction and magnitude of skeletal surgical movements. This method represents a new approach to quantify maxillary and mandibular surgical displacement in three dimensions. The technique includes measuring the distance of corresponding landmarks digitized directly on DICOM image slices in relation to three dimensional reference planes. The accuracy of the measurements was assessed against a set of “gold standard” measurements extracted from simulated model surgery. The results confirmed the accuracy of the method within 0.34mm. Therefore, the method was applied in this study. The results of this validation were published in a peer refereed journal. • The use of a generic mesh to assess soft tissue changes using stereophotogrammetry. The generic facial mesh played a major role in the soft tissue dense correspondence analysis. The conformed generic mesh represented the geometrical information of the individual’s facial mesh on which it was conformed (elastically deformed). Therefore, the accuracy of generic mesh conformation is essential to guarantee an accurate replica of the individual facial characteristics. The results showed an acceptable overall mean error of the conformation of generic mesh 1 mm. The results of this study were accepted for publication in peer refereed scientific journal. Skeletal tissue analysis was performed using the validated “Direct DICOM slices landmarking method” while soft tissue analysis was performed using Dense correspondence analysis. The analysis of soft tissue was novel and produced a comprehensive description of facial changes in response to orthognathic surgery. The results were accepted for publication in a refereed scientific Journal. The main soft tissue changes associated with Le Fort I were advancement at the midface region combined with widening of the paranasal, upper lip and nostrils. Minor changes were noticed at the tip of the nose and oral commissures. The main soft tissue changes associated with mandibular advancement surgery were advancement and downward displacement of the chin and lower lip regions, limited widening of the lower lip and slight reversion of the lower lip vermilion combined with minimal backward displacement of the upper lip were recorded. Minimal changes were observed on the oral commissures. The main soft tissue changes associated with bimaxillary advancement surgery were generalized advancement of the middle and lower thirds of the face combined with widening of the paranasal, upper lip and nostrils regions. In Le Fort I cases, the correlation between the changes of the facial soft tissue and the skeletal surgical movements was assessed using PCA. A statistical method known as ’Leave one out cross validation’ was applied on the 30 cases which had Le Fort I osteotomy surgical procedure to effectively utilize the data for the prediction algorithm. The prediction accuracy of soft tissue changes showed a mean error ranging between (0.0006mm±0.582) at the nose region to (-0.0316mm±2.1996) at the various facial regions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An important part of computed tomography is the calculation of a three-dimensional reconstruction of an object from series of X-ray images. Unfortunately, some applications do not provide sufficient X-ray images. Then, the reconstructed objects no longer truly represent the original. Inside of the volumes, the accuracy seems to vary unpredictably. In this paper, we introduce a novel method to evaluate any reconstruction, voxel by voxel. The evaluation is based on a sophisticated probabilistic handling of the measured X-rays, as well as the inclusion of a priori knowledge about the materials that the object receiving the X-ray examination consists of. For each voxel, the proposed method outputs a numerical value that represents the probability of existence of a predefined material at the position of the voxel while doing X-ray. Such a probabilistic quality measure was lacking so far. In our experiment, false reconstructed areas get detected by their low probability. In exact reconstructed areas, a high probability predominates. Receiver Operating Characteristics not only confirm the reliability of our quality measure but also demonstrate that existing methods are less suitable for evaluating a reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of accurate modeling techniques for nanoscale thermal transport is an active area of research. Modern day nanoscale devices have length scales of tens of nanometers and are prone to overheating, which reduces device performance and lifetime. Therefore, accurate temperature profiles are needed to predict the reliability of nanoscale devices. The majority of models that appear in the literature obtain temperature profiles through the solution of the Boltzmann transport equation (BTE). These models often make simplifying assumptions about the nature of the quantized energy carriers (phonons). Additionally, most previous work has focused on simulation of planar two dimensional structures. This thesis presents a method which captures the full anisotropy of the Brillouin zone within a three dimensional solution to the BTE. The anisotropy of the Brillouin zone is captured by solving the BTE for all vibrational modes allowed by the Born Von-Karman boundary conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, the effects of chemotaxis and steric interactions in active suspensions are analyzed by extending the kinetic model proposed by Saintillan and Shelley [1, 2]. In this model, a conservation equation for the active particle configuration is coupled to the Stokes equation for the flow arising from the force dipole exerted by the particles on the fluid. The fluid flow equations are solved spectrally and the conservation equation is solved by second-order finite differencing in space and second-order Adams-Bashforth time marching. First, the dynamics in suspensions of oxytactic run-and-tumble bacteria confined in thin liquid films surrounded by air is investigated. These bacteria modify their tumbling behavior by making temporal comparisons of the oxygen concentration, and, on average, swim towards high concentrations of oxygen. The kinetic model proposed by Saintillan and Shelley [1, 2] is modified to include run-and-tumble effects and oxygentaxis. The spatio-temporal dynamics of the oxygen and bacterial concentration are analyzed. For small film thicknesses, there is a weak migration of bacteria to the boundaries, and the oxygen concentration is high inside the film as a result of diffusion; both bacterial and oxygen concentrations quickly reach steady states. Above a critical film thickness (approximately 200 micron), a transition to chaotic dynamics is observed and is characterized by turbulent-like 3D motion, the formation of bacterial plumes, enhanced oxygen mixing and transport into the film, and hydrodynamic velocities of magnitudes up to 7 times the single bacterial swimming speed. The simulations demonstrate that the combined effects of hydrodynamic interactions and oxygentaxis create collective three-dimensional instabilities which enhances oxygen availability for the bacteria. Our simulation results are consistent with the experimental findings of Sokolov et al. [3], who also observed a similar transition with increasing film thickness. Next, the dynamics in concentrated suspensions of active self-propelled particles in a 3D periodic domain are analyzed. We modify the kinetic model of Saintillan and Shelley [1, 2] by including an additional nematic alignment torque proportional to the local concentration in the equation for the rotational velocity of the particles, causing them to align locally with their neighbors (Doi and Edwards [4]). Large-scale three- dimensional simulations show that, in the presence of such a torque both pusher and puller suspensions are unstable to random fluctuations and are characterized by highly nematic structures. Detailed measures are defined to quantify the degree and direction of alignment, and the effects of steric interactions on pattern formation will be presented. Our analysis shows that steric interactions have a destabilizing effect in active suspensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanotechnology has revolutionised humanity's capability in building microscopic systems by manipulating materials on a molecular and atomic scale. Nan-osystems are becoming increasingly smaller and more complex from the chemical perspective which increases the demand for microscopic characterisation techniques. Among others, transmission electron microscopy (TEM) is an indispensable tool that is increasingly used to study the structures of nanosystems down to the molecular and atomic scale. However, despite the effectivity of this tool, it can only provide 2-dimensional projection (shadow) images of the 3D structure, leaving the 3-dimensional information hidden which can lead to incomplete or erroneous characterization. One very promising inspection method is Electron Tomography (ET), which is rapidly becoming an important tool to explore the 3D nano-world. ET provides (sub-)nanometer resolution in all three dimensions of the sample under investigation. However, the fidelity of the ET tomogram that is achieved by current ET reconstruction procedures remains a major challenge. This thesis addresses the assessment and advancement of electron tomographic methods to enable high-fidelity three-dimensional investigations. A quality assessment investigation was conducted to provide a quality quantitative analysis of the main established ET reconstruction algorithms and to study the influence of the experimental conditions on the quality of the reconstructed ET tomogram. Regular shaped nanoparticles were used as a ground-truth for this study. It is concluded that the fidelity of the post-reconstruction quantitative analysis and segmentation is limited, mainly by the fidelity of the reconstructed ET tomogram. This motivates the development of an improved tomographic reconstruction process. In this thesis, a novel ET method was proposed, named dictionary learning electron tomography (DLET). DLET is based on the recent mathematical theorem of compressed sensing (CS) which employs the sparsity of ET tomograms to enable accurate reconstruction from undersampled (S)TEM tilt series. DLET learns the sparsifying transform (dictionary) in an adaptive way and reconstructs the tomogram simultaneously from highly undersampled tilt series. In this method, the sparsity is applied on overlapping image patches favouring local structures. Furthermore, the dictionary is adapted to the specific tomogram instance, thereby favouring better sparsity and consequently higher quality reconstructions. The reconstruction algorithm is based on an alternating procedure that learns the sparsifying dictionary and employs it to remove artifacts and noise in one step, and then restores the tomogram data in the other step. Simulation and real ET experiments of several morphologies are performed with a variety of setups. Reconstruction results validate its efficiency in both noiseless and noisy cases and show that it yields an improved reconstruction quality with fast convergence. The proposed method enables the recovery of high-fidelity information without the need to worry about what sparsifying transform to select or whether the images used strictly follow the pre-conditions of a certain transform (e.g. strictly piecewise constant for Total Variation minimisation). This can also avoid artifacts that can be introduced by specific sparsifying transforms (e.g. the staircase artifacts the may result when using Total Variation minimisation). Moreover, this thesis shows how reliable elementally sensitive tomography using EELS is possible with the aid of both appropriate use of Dual electron energy loss spectroscopy (DualEELS) and the DLET compressed sensing algorithm to make the best use of the limited data volume and signal to noise inherent in core-loss electron energy loss spectroscopy (EELS) from nanoparticles of an industrially important material. Taken together, the results presented in this thesis demonstrates how high-fidelity ET reconstructions can be achieved using a compressed sensing approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research described in this thesis was motivated by the need of a robust model capable of representing 3D data obtained with 3D sensors, which are inherently noisy. In addition, time constraints have to be considered as these sensors are capable of providing a 3D data stream in real time. This thesis proposed the use of Self-Organizing Maps (SOMs) as a 3D representation model. In particular, we proposed the use of the Growing Neural Gas (GNG) network, which has been successfully used for clustering, pattern recognition and topology representation of multi-dimensional data. Until now, Self-Organizing Maps have been primarily computed offline and their application in 3D data has mainly focused on free noise models, without considering time constraints. It is proposed a hardware implementation leveraging the computing power of modern GPUs, which takes advantage of a new paradigm coined as General-Purpose Computing on Graphics Processing Units (GPGPU). The proposed methods were applied to different problem and applications in the area of computer vision such as the recognition and localization of objects, visual surveillance or 3D reconstruction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present topological derivative and energy based procedures for the imaging of micro and nano structures using one beam of visible light of a single wavelength. Objects with diameters as small as 10 nm can be located and their position tracked with nanometer precision. Multiple objects dis-tributed either on planes perpendicular to the incidence direction or along axial lines in the incidence direction are distinguishable. More precisely, the shape and size of plane sections perpendicular to the incidence direction can be clearly determined, even for asymmetric and nonconvex scatterers. Axial resolution improves as the size of the objects decreases. Initial reconstructions may proceed by gluing together two-dimensional horizontal slices between axial peaks or by locating objects at three-dimensional peaks of topological energies, depending on the effective wavenumber. Below a threshold size, topological derivative based iterative schemes improve initial predictions of the lo-cation, size, and shape of objects by postprocessing fixed measured data. For larger sizes, tracking the peaks of topological energy fields that average information from additional incident light beams seems to be more effective.