928 resultados para Systems of Linear Diophantine Constraints
Resumo:
A Participatory Rural Appraisal (PRA) was conducted in dairy farms of the North West Province of Cameroon. The aim of the PRA was to have a better understanding of the prevailing dairy systems, identify problems, and set priorities for research and development that can contribute to improved systems of production. A multidisciplinary team of researchers and extension agents was constituted. It was made up of scientists of the following fields: cattle management, forage science, agro economy, veterinary, dairy technology, nutrition and extension. The research team visited farmers' groups and divided itself into subgroups for farm and village walks during which direct observations were also noted. The extension agent of the locality, key informants, gave additional information overlooked by farmers. Interviews were also carried out with other stakeholders of the dairy sector. The research team met the day following the visit to agree on a common report. Results show that five small scale dairy production systems are found in the region: transhumance, improved extensive, semi intensive, zero grazing and peri-urban. Agriculture is well integrated to dairying. Main constraints include in order of importance: poor marketing opportunities and long distances to market, limited grazing land and poor supplementation strategies, poor reproductive management and poor calving interval, inadequate knowledge in processing, hygiene and milk preservation, and limited health control. In market oriented farms, reproduction and feeding were the most important constraints. Main factors influencing dairy production are: milk collection, fresh milk price, consumer demand, genotype and management. These results suggest that much can be done to improve production by extending improved packages to dairy farmers.
Resumo:
The influence matrix is used in ordinary least-squares applications for monitoring statistical multiple-regression analyses. Concepts related to the influence matrix provide diagnostics on the influence of individual data on the analysis - the analysis change that would occur by leaving one observation out, and the effective information content (degrees of freedom for signal) in any sub-set of the analysed data. In this paper, the corresponding concepts have been derived in the context of linear statistical data assimilation in numerical weather prediction. An approximate method to compute the diagonal elements of the influence matrix (the self-sensitivities) has been developed for a large-dimension variational data assimilation system (the four-dimensional variational system of the European Centre for Medium-Range Weather Forecasts). Results show that, in the boreal spring 2003 operational system, 15% of the global influence is due to the assimilated observations in any one analysis, and the complementary 85% is the influence of the prior (background) information, a short-range forecast containing information from earlier assimilated observations. About 25% of the observational information is currently provided by surface-based observing systems, and 75% by satellite systems. Low-influence data points usually occur in data-rich areas, while high-influence data points are in data-sparse areas or in dynamically active regions. Background-error correlations also play an important role: high correlation diminishes the observation influence and amplifies the importance of the surrounding real and pseudo observations (prior information in observation space). Incorrect specifications of background and observation-error covariance matrices can be identified, interpreted and better understood by the use of influence-matrix diagnostics for the variety of observation types and observed variables used in the data assimilation system. Copyright © 2004 Royal Meteorological Society
Resumo:
In this paper new robust nonlinear model construction algorithms for a large class of linear-in-the-parameters models are introduced to enhance model robustness, including three algorithms using combined A- or D-optimality or PRESS statistic (Predicted REsidual Sum of Squares) with regularised orthogonal least squares algorithm respectively. A common characteristic of these algorithms is that the inherent computation efficiency associated with the orthogonalisation scheme in orthogonal least squares or regularised orthogonal least squares has been extended such that the new algorithms are computationally efficient. A numerical example is included to demonstrate effectiveness of the algorithms. Copyright (C) 2003 IFAC.
Resumo:
The identification of non-linear systems using only observed finite datasets has become a mature research area over the last two decades. A class of linear-in-the-parameter models with universal approximation capabilities have been intensively studied and widely used due to the availability of many linear-learning algorithms and their inherent convergence conditions. This article presents a systematic overview of basic research on model selection approaches for linear-in-the-parameter models. One of the fundamental problems in non-linear system identification is to find the minimal model with the best model generalisation performance from observational data only. The important concepts in achieving good model generalisation used in various non-linear system-identification algorithms are first reviewed, including Bayesian parameter regularisation and models selective criteria based on the cross validation and experimental design. A significant advance in machine learning has been the development of the support vector machine as a means for identifying kernel models based on the structural risk minimisation principle. The developments on the convex optimisation-based model construction algorithms including the support vector regression algorithms are outlined. Input selection algorithms and on-line system identification algorithms are also included in this review. Finally, some industrial applications of non-linear models are discussed.
Resumo:
We present a kinetic double layer model coupling aerosol surface and bulk chemistry (K2-SUB) based on the PRA framework of gas-particle interactions (Poschl-Rudich-Ammann, 2007). K2-SUB is applied to a popular model system of atmospheric heterogeneous chemistry: the interaction of ozone with oleic acid. We show that our modelling approach allows de-convoluting surface and bulk processes, which has been a controversial topic and remains an important challenge for the understanding and description of atmospheric aerosol transformation. In particular, we demonstrate how a detailed treatment of adsorption and reaction at the surface can be coupled to a description of bulk reaction and transport that is consistent with traditional resistor model formulations. From literature data we have derived a consistent set of kinetic parameters that characterise mass transport and chemical reaction of ozone at the surface and in the bulk of oleic acid droplets. Due to the wide range of rate coefficients reported from different experimental studies, the exact proportions between surface and bulk reaction rates remain uncertain. Nevertheless, the model results suggest an important role of chemical reaction in the bulk and an approximate upper limit of similar to 10(-11) cm(2) s(-1) for the surface reaction rate coefficient. Sensitivity studies show that the surface accommodation coefficient of the gas-phase reactant has a strong non-linear influence on both surface and bulk chemical reactions. We suggest that K2-SUB may be used to design, interpret and analyse future experiments for better discrimination between surface and bulk processes in the oleic acid-ozone system as well as in other heterogeneous reaction systems of atmospheric relevance.
Resumo:
A neural network enhanced proportional, integral and derivative (PID) controller is presented that combines the attributes of neural network learning with a generalized minimum-variance self-tuning control (STC) strategy. The neuro PID controller is structured with plant model identification and PID parameter tuning. The plants to be controlled are approximated by an equivalent model composed of a simple linear submodel to approximate plant dynamics around operating points, plus an error agent to accommodate the errors induced by linear submodel inaccuracy due to non-linearities and other complexities. A generalized recursive least-squares algorithm is used to identify the linear submodel, and a layered neural network is used to detect the error agent in which the weights are updated on the basis of the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model, and therefore the error agent is naturally functioned within the control law. In this way the controller can deal not only with a wide range of linear dynamic plants but also with those complex plants characterized by severe non-linearity, uncertainties and non-minimum phase behaviours. Two simulation studies are provided to demonstrate the effectiveness of the controller design procedure.
Resumo:
We provide a unified framework for a range of linear transforms that can be used for the analysis of terahertz spectroscopic data, with particular emphasis on their application to the measurement of leaf water content. The use of linear transforms for filtering, regression, and classification is discussed. For illustration, a classification problem involving leaves at three stages of drought and a prediction problem involving simulated spectra are presented. Issues resulting from scaling the data set are discussed. Using Lagrange multipliers, we arrive at the transform that yields the maximum separation between the spectra and show that this optimal transform is equivalent to computing the Euclidean distance between the samples. The optimal linear transform is compared with the average for all the spectra as well as with the Karhunen–Loève transform to discriminate a wet leaf from a dry leaf. We show that taking several principal components into account is equivalent to defining new axes in which data are to be analyzed. The procedure shows that the coefficients of the Karhunen–Loève transform are well suited to the process of classification of spectra. This is in line with expectations, as these coefficients are built from the statistical properties of the data set analyzed.
Resumo:
A two-dimensional X-ray scattering system developed around a CCD-based area detector is presented, both in terms of hardware employed and software designed and developed. An essential feature is the integration of hardware and software, detection and sample environment control which enables time-resolving in-situ wide-angle X-ray scattering measurements of global structural and orientational parameters of polymeric systems subjected to a variety of controlled external fields. The development and operation of a number of rheometers purpose-built for the application of such fields are described. Examples of the use of this system in monitoring degrees of shear-induced orientation in liquid-crystalline systems and crystallization of linear polymers subsequent to shear flow are presented.
Resumo:
We examine differential equations where nonlinearity is a result of the advection part of the total derivative or the use of quadratic algebraic constraints between state variables (such as the ideal gas law). We show that these types of nonlinearity can be accounted for in the tangent linear model by a suitable choice of the linearization trajectory. Using this optimal linearization trajectory, we show that the tangent linear model can be used to reproduce the exact nonlinear error growth of perturbations for more than 200 days in a quasi-geostrophic model and more than (the equivalent of) 150 days in the Lorenz 96 model. We introduce an iterative method, purely based on tangent linear integrations, that converges to this optimal linearization trajectory. The main conclusion from this article is that this iterative method can be used to account for nonlinearity in estimation problems without using the nonlinear model. We demonstrate this by performing forecast sensitivity experiments in the Lorenz 96 model and show that we are able to estimate analysis increments that improve the two-day forecast using only four backward integrations with the tangent linear model. Copyright © 2011 Royal Meteorological Society
Resumo:
CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. This will damage some of the key properties of the space-time codes and can lead to substantial performance degradation. In this paper, we study the design of linear dispersion codes (LDCs) for such asynchronous cooperative communication networks. Firstly, the concept of conventional LDCs is extended to the delay-tolerant version and new design criteria are discussed. Then we propose a new design method to yield delay-tolerant LDCs that reach the optimal Jensen's upper bound on ergodic capacity as well as minimum average pairwise error probability. The proposed design employs stochastic gradient algorithm to approach a local optimum. Moreover, it is improved by using simulated annealing type optimization to increase the likelihood of the global optimum. The proposed method allows for flexible number of nodes, receive antennas, modulated symbols and flexible length of codewords. Simulation results confirm the performance of the newly-proposed delay-tolerant LDCs.
Resumo:
We give a characterisation of the spectral properties of linear differential operators with constant coefficients, acting on functions defined on a bounded interval, and determined by general linear boundary conditions. The boundary conditions may be such that the resulting operator is not selfadjoint. We associate the spectral properties of such an operator $S$ with the properties of the solution of a corresponding boundary value problem for the partial differential equation $\partial_t q \pm iSq=0$. Namely, we are able to establish an explicit correspondence between the properties of the family of eigenfunctions of the operator, and in particular whether this family is a basis, and the existence and properties of the unique solution of the associated boundary value problem. When such a unique solution exists, we consider its representation as a complex contour integral that is obtained using a transform method recently proposed by Fokas and one of the authors. The analyticity properties of the integrand in this representation are crucial for studying the spectral theory of the associated operator.
Resumo:
We present a dynamic causal model that can explain context-dependent changes in neural responses, in the rat barrel cortex, to an electrical whisker stimulation at different frequencies. Neural responses were measured in terms of local field potentials. These were converted into current source density (CSD) data, and the time series of the CSD sink was extracted to provide a time series response train. The model structure consists of three layers (approximating the responses from the brain stem to the thalamus and then the barrel cortex), and the latter two layers contain nonlinearly coupled modules of linear second-order dynamic systems. The interaction of these modules forms a nonlinear regulatory system that determines the temporal structure of the neural response amplitude for the thalamic and cortical layers. The model is based on the measured population dynamics of neurons rather than the dynamics of a single neuron and was evaluated against CSD data from experiments with varying stimulation frequency (1–40 Hz), random pulse trains, and awake and anesthetized animals. The model parameters obtained by optimization for different physiological conditions (anesthetized or awake) were significantly different. Following Friston, Mechelli, Turner, and Price (2000), this work is part of a formal mathematical system currently being developed (Zheng et al., 2005) that links stimulation to the blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) signal through neural activity and hemodynamic variables. The importance of the model described here is that it can be used to invert the hemodynamic measurements of changes in blood flow to estimate the underlying neural activity.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
In cooperative communication networks, owing to the nodes' arbitrary geographical locations and individual oscillators, the system is fundamentally asynchronous. Such a timing mismatch may cause rank deficiency of the conventional space-time codes and, thus, performance degradation. One efficient way to overcome such an issue is the delay-tolerant space-time codes (DT-STCs). The existing DT-STCs are designed assuming that the transmitter has no knowledge about the channels. In this paper, we show how the performance of DT-STCs can be improved by utilizing some feedback information. A general framework for designing DT-STC with limited feedback is first proposed, allowing for flexible system parameters such as the number of transmit/receive antennas, modulated symbols, and the length of codewords. Then, a new design method is proposed by combining Lloyd's algorithm and the stochastic gradient-descent algorithm to obtain optimal codebook of STCs, particularly for systems with linear minimum-mean-square-error receiver. Finally, simulation results confirm the performance of the newly designed DT-STCs with limited feedback.