900 resultados para Syringe sharing
Resumo:
The IEEE 802.15.4 standard provides appealing features to simultaneously support real-time and non realtime traffic, but it is only capable of supporting real-time communications from at most seven devices. Additionally, it cannot guarantee delay bounds lower than the superframe duration. Motivated by this problem, in this paper we propose an Explicit Guaranteed time slot Sharing and Allocation scheme (EGSA) for beacon-enabled IEEE 802.15.4 networks. This scheme is capable of providing tighter delay bounds for real-time communications by splitting the Contention Free access Period (CFP) into smaller mini time slots and by means of a new guaranteed bandwidth allocation scheme for a set of devices with periodic messages. At the same the novel bandwidth allocation scheme can maximize the duration of the CFP for non real-time communications. Performance analysis results show that the EGSA scheme works efficiently and outperforms competitor schemes both in terms of guaranteed delay and bandwidth utilization.
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
Mestrado em Gestão e Empreendedorismo
Resumo:
In this paper, we address the problem of sharing a wireless channel among a set of sporadic message streams where a message stream issues transmission requests with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements static-priority scheduling, supports a large number of priority levels and is fully distributed. It is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But, unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. The evaluation of the protocol with real embedded computing platforms is presented to show that the proposed protocol is in fact collision-free and prioritized. We measure the response times of our implementation and show that the response-time analysis developed for the protocol offers an upper bound on the response times.
Resumo:
Consider the problem of scheduling a set of tasks on a single processor such that deadlines are met. Assume that tasks may share data and that linearizability, the most common correctness condition for data sharing, must be satisfied. We find that linearizability can severely penalize schedulability. We identify, however, two special cases where linearizability causes no or not too large penalty on schedulability.
Resumo:
There is an increasing demand for highly dynamic realtime systems where several independently developed applications with different timing requirements can coexist. This paper proposes a protocol to integrate shared resources and precedence constraints among tasks in such systems assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among needed tasks, minimising the cost of blocking.
Resumo:
This paper proposes a new strategy to integrate shared resources and precedence constraints among real-time tasks, assuming no precise information on critical sections and computation times is available. The concept of bandwidth inheritance is combined with a capacity sharing and stealing mechanism to efficiently exchange bandwidth among tasks to minimise the degree of deviation from the ideal system’s behaviour caused by inter-application blocking. The proposed Capacity Exchange Protocol (CXP) is simpler than other proposed solutions for sharing resources in open real-time systems since it does not attempt to return the inherited capacity in the same exact amount to blocked servers. This loss of optimality is worth the reduced complexity as the protocol’s behaviour nevertheless tends to be fair and outperforms the previous solutions in highly dynamic scenarios as demonstrated by extensive simulations. A formal analysis of CXP is presented and the conditions under which it is possible to guarantee hard real-time tasks are discussed.
Resumo:
Mestrado em Ensino Precoce do Inglês
Resumo:
Relatório Final de Estágio apresentado à Escola Superior de Dança, com vista à obtenção do grau de Mestre em Ensino de Dança.
Resumo:
OBJECTIVE To evaluate the level of HIV/AIDS knowledge among men who have sex with men in Brazil using the latent trait model estimated by Item Response Theory. METHODS Multicenter, cross-sectional study, carried out in ten Brazilian cities between 2008 and 2009. Adult men who have sex with men were recruited (n = 3,746) through Respondent Driven Sampling. HIV/AIDS knowledge was ascertained through ten statements by face-to-face interview and latent scores were obtained through two-parameter logistic modeling (difficulty and discrimination) using Item Response Theory. Differential item functioning was used to examine each item characteristic curve by age and schooling. RESULTS Overall, the HIV/AIDS knowledge scores using Item Response Theory did not exceed 6.0 (scale 0-10), with mean and median values of 5.0 (SD = 0.9) and 5.3, respectively, with 40.7% of the sample with knowledge levels below the average. Some beliefs still exist in this population regarding the transmission of the virus by insect bites, by using public restrooms, and by sharing utensils during meals. With regard to the difficulty and discrimination parameters, eight items were located below the mean of the scale and were considered very easy, and four items presented very low discrimination parameter (< 0.34). The absence of difficult items contributed to the inaccuracy of the measurement of knowledge among those with median level and above. CONCLUSIONS Item Response Theory analysis, which focuses on the individual properties of each item, allows measures to be obtained that do not vary or depend on the questionnaire, which provides better ascertainment and accuracy of knowledge scores. Valid and reliable scales are essential for monitoring HIV/AIDS knowledge among the men who have sex with men population over time and in different geographic regions, and this psychometric model brings this advantage.
Resumo:
This paper presents a micro power light energy harvesting system for indoor environments. Light energy is collected by amorphous silicon photovoltaic (a-Si:H PV) cells, processed by a switched capacitor (SC) voltage doubler circuit with maximum power point tracking (MPPT), and finally stored in a large capacitor. The MPPT fractional open circuit voltage (V-OC) technique is implemented by an asynchronous state machine (ASM) that creates and dynamically adjusts the clock frequency of the step-up SC circuit, matching the input impedance of the SC circuit to the maximum power point condition of the PV cells. The ASM has a separate local power supply to make it robust against load variations. In order to reduce the area occupied by the SC circuit, while maintaining an acceptable efficiency value, the SC circuit uses MOSFET capacitors with a charge sharing scheme for the bottom plate parasitic capacitors. The circuit occupies an area of 0.31 mm(2) in a 130 nm CMOS technology. The system was designed in order to work under realistic indoor light intensities. Experimental results show that the proposed system, using PV cells with an area of 14 cm(2), is capable of starting-up from a 0 V condition, with an irradiance of only 0.32 W/m(2). After starting-up, the system requires an irradiance of only 0.18 W/m(2) (18 mu W/cm(2)) to remain operating. The ASM circuit can operate correctly using a local power supply voltage of 453 mV, dissipating only 0.085 mu W. These values are, to the best of the authors' knowledge, the lowest reported in the literature. The maximum efficiency of the SC converter is 70.3 % for an input power of 48 mu W, which is comparable with reported values from circuits operating at similar power levels.
Resumo:
The potential of the electrocardiographic (ECG) signal as a biometric trait has been ascertained in the literature over the past decade. The inherent characteristics of the ECG make it an interesting biometric modality, given its universality, intrinsic aliveness detection, continuous availability, and inbuilt hidden nature. These properties enable the development of novel applications, where non-intrusive and continuous authentication are critical factors. Examples include, among others, electronic trading platforms, the gaming industry, and the auto industry, in particular for car sharing programs and fleet management solutions. However, there are still some challenges to overcome in order to make the ECG a widely accepted biometric. In particular, the questions of uniqueness (inter-subject variability) and permanence over time (intra-subject variability) are still largely unanswered. In this paper we focus on the uniqueness question, presenting a preliminary study of our biometric recognition system, testing it on a database encompassing 618 subjects. We also performed tests with subsets of this population. The results reinforce that the ECG is a viable trait for biometrics, having obtained an Equal Error Rate of 9.01% and an Error of Identification of 15.64% for the entire test population.
Resumo:
Today all kinds of innovations and research work is done by partnerships of competent entities each having some specialized skills. Like the development of the global economy, global innovation partnerships have grown considerably and form the basis of most of the sophisticated innovations today. To further streamline and simplify such cooperation, several innovation networks have been formed, both at local and global levels. This paper discusses the different types of innovations and how cooperation can benefit innovation in terms of pooling of resources and sharing of risks. One example of an open global co-innovation network promoted by Tata Consultancy Services, the TCS COIN is taken as a case. It enables venture capitalists, consultants, research agencies, companies and universities form nodes of the network so that each entity can play a meaningful role in the innovation network. Further, two innovation projects implemented using the COIN are discussed. Innovation Networks like these could form the basis of a unique global innovation network, which is not owned by any company and is used by innovation partners globally to collaborate and conduct research and development.
Resumo:
Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and there is no base station. Each computer node hosts a set of sporadic message streams where a message stream releases messages with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements staticpriority scheduling. The MAC protocol allows multiple masters and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams in multihop networks.