903 resultados para Synthetic Control Method
Resumo:
This paper considers left-invariant control systems defined on the orthonormal frame bundles of simply connected manifolds of constant sectional curvature, namely the space forms Euclidean space E-3, the sphere S-3 and Hyperboloid H-3 with the corresponding frame bundles equal to the Euclidean group of motions SE(3), the rotation group SO(4) and the Lorentz group SO(1, 3). Orthonormal frame bundles of space forms coincide with their isometry groups and therefore the focus shifts to left-invariant control systems defined on Lie groups. In this paper a method for integrating these systems is given where the controls are time-independent. In the Euclidean case the elements of the Lie algebra se(3) are often referred to as twists. For constant twist motions, the corresponding curves g(t) is an element of SE(3) are known as screw motions, given in closed form by using the well known Rodrigues' formula. However, this formula is only applicable to the Euclidean case. This paper gives a method for computing the non-Euclidean screw motions in closed form. This involves decoupling the system into two lower dimensional systems using the double cover properties of Lie groups, then the lower dimensional systems are solved explicitly in closed form.
Resumo:
This paper introduces a procedure for filtering electromyographic (EMG) signals. Its key element is the Empirical Mode Decomposition, a novel digital signal processing technique that can decompose my time-series into a set of functions designated as intrinsic mode functions. The procedure for EMG signal filtering is compared to a related approach based on the wavelet transform. Results obtained from the analysis of synthetic and experimental EMG signals show that Our method can be Successfully and easily applied in practice to attenuation of background activity in EMG signals. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
Knowledge-elicitation is a common technique used to produce rules about the operation of a plant from the knowledge that is available from human expertise. Similarly, data-mining is becoming a popular technique to extract rules from the data available from the operation of a plant. In the work reported here knowledge was required to enable the supervisory control of an aluminium hot strip mill by the determination of mill set-points. A method was developed to fuse knowledge-elicitation and data-mining to incorporate the best aspects of each technique, whilst avoiding known problems. Utilisation of the knowledge was through an expert system, which determined schedules of set-points and provided information to human operators. The results show that the method proposed in this paper was effective in producing rules for the on-line control of a complex industrial process.
Resumo:
Assimilation of physical variables into coupled physical/biogeochemical models poses considerable difficulties. One problem is that data assimilation can break relationships between physical and biological variables. As a consequence, biological tracers, especially nutrients, are incorrectly displaced in the vertical, resulting in unrealistic biogeochemical fields. To prevent this, we present the idea of applying an increment to the nutrient field within a data assimilating model to ensure that nutrient-potential density relationships are maintained within a water column during assimilation. After correcting the nutrients, it is assumed that other biological variables rapidly adjust to the corrected nutrient fields. We applied this method to a 17 year run of the 2° NEMO ocean-ice model coupled to the PlankTOM5 ecosystem model. Results were compared with a control with no assimilation, and with a model with physical assimilation but no nutrient increment. In the nutrient incrementing experiment, phosphate distributions were improved both at high latitudes and at the equator. At midlatitudes, assimilation generated unrealistic advective upwelling of nutrients within the boundary currents, which spread into the subtropical gyres resulting in more biased nutrient fields. This result was largely unaffected by the nutrient increment and is probably due to boundary currents being poorly resolved in a 2° model. Changes to nutrient distributions fed through into other biological parameters altering primary production, air-sea CO2 flux, and chlorophyll distributions. These secondary changes were most pronounced in the subtropical gyres and at the equator, which are more nutrient limited than high latitudes.
Resumo:
A novel rotor velocity estimation scheme applicable to vector controlled induction motors has been described. The proposed method will evaluate rotor velocity, ωr, on-line, does not require any extra transducers or injection of any signals, nor does it employ complicated algorithms such as MRAS or Kalman filters. Furthermore, the new scheme will operate at all velocities including zero with very little error. The procedure employs motor model equations, however all differential and integral terms have been eliminated giving a very fast, low-cost, effective and practical alternative to the current available methods. Simulation results verify the operation of the scheme under ideal and PWM conditions.
Resumo:
A revised Bayesian algorithm for estimating surface rain rate, convective rain proportion, and latent heating profiles from satellite-borne passive microwave radiometer observations over ocean backgrounds is described. The algorithm searches a large database of cloud-radiative model simulations to find cloud profiles that are radiatively consistent with a given set of microwave radiance measurements. The properties of these radiatively consistent profiles are then composited to obtain best estimates of the observed properties. The revised algorithm is supported by an expanded and more physically consistent database of cloud-radiative model simulations. The algorithm also features a better quantification of the convective and nonconvective contributions to total rainfall, a new geographic database, and an improved representation of background radiances in rain-free regions. Bias and random error estimates are derived from applications of the algorithm to synthetic radiance data, based upon a subset of cloud-resolving model simulations, and from the Bayesian formulation itself. Synthetic rain-rate and latent heating estimates exhibit a trend of high (low) bias for low (high) retrieved values. The Bayesian estimates of random error are propagated to represent errors at coarser time and space resolutions, based upon applications of the algorithm to TRMM Microwave Imager (TMI) data. Errors in TMI instantaneous rain-rate estimates at 0.5°-resolution range from approximately 50% at 1 mm h−1 to 20% at 14 mm h−1. Errors in collocated spaceborne radar rain-rate estimates are roughly 50%–80% of the TMI errors at this resolution. The estimated algorithm random error in TMI rain rates at monthly, 2.5° resolution is relatively small (less than 6% at 5 mm day−1) in comparison with the random error resulting from infrequent satellite temporal sampling (8%–35% at the same rain rate). Percentage errors resulting from sampling decrease with increasing rain rate, and sampling errors in latent heating rates follow the same trend. Averaging over 3 months reduces sampling errors in rain rates to 6%–15% at 5 mm day−1, with proportionate reductions in latent heating sampling errors.
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
The purpose of this paper is to design a control law for continuous systems with Boolean inputs allowing the output to track a desired trajectory. Such systems are controlled by items of commutation. This type of systems, with Boolean inputs, has found increasing use in the electric industry. Power supplies include such systems and a power converter represents one of theses systems. For instance, in power electronics the control variable is the switching OFF and ON of components such as thyristors or transistors. In this paper, a method is proposed for the designing of a control law in state space for such systems. This approach is implemented in simulation for the control of an electronic circuit.
Resumo:
Using the integral manifold approach, a composite control—the sum of a fast control and a slow control—is derived for a particular class of non-linear singularly perturbed systems. The fast control is designed completely at the outset, thus ensuring the stability of the fast transients of the system and, furthermore, the existence of the integral manifold. A new method is then presented which simplifies the derivation of a slow control such that the singularly perturbed system meets a preselected design objective to within some specified order of accuracy. Though this approach is, by its very nature, ad hoc, the underlying procedure is easily extended to more general classes of singularly perturbed systems by way of three examples.
Resumo:
A novel algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimisation and Parameter Estimation (DISOPE) which has been designed to achieve the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimisation procedure. A method based on Broyden's ideas is used for approximating some derivative trajectories required. Ways for handling con straints on both manipulated and state variables are described. Further, a method for coping with batch-to- batch dynamic variations in the process, which are common in practice, is introduced. It is shown that the iterative procedure associated with the algorithm naturally suits applications to batch processes. The algorithm is success fully applied to a benchmark problem consisting of the input profile optimisation of a fed-batch fermentation process.
Resumo:
In industrial practice, constrained steady state optimisation and predictive control are separate, albeit closely related functions within the control hierarchy. This paper presents a method which integrates predictive control with on-line optimisation with economic objectives. A receding horizon optimal control problem is formulated using linear state space models. This optimal control problem is very similar to the one presented in many predictive control formulations, but the main difference is that it includes in its formulation a general steady state objective depending on the magnitudes of manipulated and measured output variables. This steady state objective may include the standard quadratic regulatory objective, together with economic objectives which are often linear. Assuming that the system settles to a steady state operating point under receding horizon control, conditions are given for the satisfaction of the necessary optimality conditions of the steady-state optimisation problem. The method is based on adaptive linear state space models, which are obtained by using on-line identification techniques. The use of model adaptation is justified from a theoretical standpoint and its beneficial effects are shown in simulations. The method is tested with simulations of an industrial distillation column and a system of chemical reactors.
Resumo:
This paper discusses the application of model reference adaptive control concepts to the automatic tuning of PID controllers. The effectiveness of the proposed method is shown through simulated applications. The gradient approach and simulated examples are provided.