959 resultados para Surface Electron Donating Properties
Resumo:
Mechanical and tribological properties of a partially crystallized sintered glass-ceramic were compared to two commercial floor tiles: black granite and porcelainized stoneware. Mechanical properties, hardness and elastic modulus were evaluated by instrumented indentation. Friction coefficient and wear characterization were evaluated using a reciprocating ball-on-flat tribometer in two controlled environments: air with relative humidity of 53% and under running water at 23 degrees C. The sintered glass-ceramic and porcelainized stoneware presented similar mechanical and tribological properties. Regarding the mechanical and tribological properties, the results suggest that this glass-ceramic is suitable to be used as industrial tile. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This work examines the extraction of mechanical properties from instrumented indentation P-h(s) curves via extensive three-dimensional finite element analyses for pyramidal tips in a wide range of solids under frictional and frictionless contact conditions. Since the topography of the imprint changes with the level of pile-up or sink-in, a relationship is identified between correction factor beta in the elastic equation for the unloading indentation stage and the amount of surface deformation effects. It is shown that the presumption of a constant beta significantly affects mechanical property extractions. Consequently, a new best-fit function is found for the correlation between penetration depth ratios h(e)/h(max), h(r)/h(max) and n, circumventing the need for the assumption of a constant value for beta, made in our prior investigation [Acta Mater. 53 (2005) pp. 3545-3561]. Simulations under frictional contact conditions provide sensible boundaries for the influence of friction on both h(e)/h(max) and h(r)/h(max). Friction is essentially found to induce an overestimation in the inferred n. Instrumented indentation experiments are also performed in three archetypal metallic materials exhibiting distinctly different contact responses. Mechanical property extractions are finally demonstrated in each of these materials.
Resumo:
In this work, the applicability of a new algorithm for the estimation of mechanical properties from instrumented indentation data was studied for thin films. The applicability was analyzed with the aid of both three-dimensional finite element simulations and experimental indentation tests. The numerical approach allowed studying the effect of the substrate on the estimation of mechanical properties of the film, which was conducted based on the ratio h(max)/l between maximum indentation depth and film thickness. For the experimental analysis, indentation tests were conducted on AISI H13 tool steel specimens, plasma nitrated and coated with TiN thin films. Results have indicated that, for the conditions analyzed in this work, the elastic deformation of the substrate limited the extraction of mechanical properties of the film/substrate system. This limitation occurred even at low h(max)/l ratios and especially for the estimation of the values of yield strength and strain hardening exponent. At indentation depths lower than 4% of the film thickness, the proposed algorithm estimated the mechanical properties of the film with accuracy. Particularly for hardness, precise values were estimated at h(max)/l lower than 0.1, i.e. 10% of film thickness. (C) 2010 Published by Elsevier B.V.
Resumo:
Austenitic stainless steels cannot be conventionally surface treated at temperatures close to 550 degrees C due to intense precipitation of nitrides or carbides. Plasma carburizing allows introducing carbon in the steel at temperatures below 500 degrees C without carbide precipitation. Plasma carburizing of AISI 316L was carried out at 480 degrees C and 400 degrees C, during 20 h, using CH(4) as carbon carrier gas. The results show that carbon expanded austenite (gamma(c)), 20 mu m in depth, was formed on the surface after the 480 degrees C treatment. Carbon expanded austenite (gamma(c)), 8 mu m in depth, was formed on the surface after the 400 degrees C treatment. DRX results showed that the austenitic FCC lattice parameter increases from 0.358 nm to 0.363 nm for the 400 degrees C treatment and to 0.369 nm for the 480 degrees C treatment, giving an estimation of circa 10 at.% carbon content for the latter. Lattice distortion, resulting from the expansion and the associated compressive residual stresses increases the surface hardness to 1040 HV(0.025). Micro-scale tensile tests were conducted on specimens prepared with the conditions selected above, which has indicated that the damage imposed to the expanded austenite layer was more easily related to each separated grain than to the overall macro-scale stresses imposed by the tensile test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In the unlubricated sliding wear of steels the mild-severe and severe-mild wear transitions have long been investigated. The effect of system inputs such as normal load, sliding speed, environment humidity and temperature, material properties, among others, on those transitions have also been studied. Although transitions seem to be caused by microstructural changes, surfaces oxidation and work-hardening, some questions remain regarding the way each aspect is involved. Since the early studies in sliding wear, it has usually been assumed that only the material properties of the softer body influence the wear behavior of contacting surfaces. For example, the Archard equation involves only the hardness of the softer body, without considering the hardness of the harder body. This work aims to discuss the importance of the harder body hardness in determining the wear regime operation. For this, pin-on-disk wear tests were carried out, in which the disk material was always harder than the pin material. Variations of the friction force and vertical displacement of the pin were registered during the tests. A material characterization before and after tests was conducted using stereoscopy and scanning electron microscopy (SEM) methods, in addition to mass loss, surface roughness and microhardness measurements. The wear results confirmed the occurrence of a mild-severe wear transition when the disk hardness was decreased. The disk hardness to pin hardness ratio (H(d)/H(p)) was used as a criterion to establish the nature of surface contact deformation and to determine the wear regime transition. A predominantly elastic or plastic contact, characterized by H(d)/H(p) values higher or lower than one, results in a mild or severe wear regime operation, respectively. (c) 2009 Elsevier B.V. All rights reserved.
Resumo:
High velocity oxi-fuel (HVOF) thermal spray process has been used in order to deposit a new alloy known as multicomponent white cast iron. The coatings were characterized in terms of macrostructure, phase composition, porosity and hardness. Coating characteristics and properties were found to be dependent on the particles size range, spray distance, gases flow rate and oxygen to propane ratio. For set of parameters utilized in this job a narrow particle size range between 20 and 45 gm with a spray distance of 200 mm and oxygen to propane ratio of 4.6 are the preferred coating parameters. Coating porosity of 0.9% and hardness of 766 HV were obtained under these conditions. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Ni-doped SnO(2) nanoparticles, promising for gas-sensing applications, have been synthesized by a polymer precursor method. X-ray diffraction (XRD) and transmission electron microscopy (TEM) data analyses indicate the exclusive formation of nanosized particles with rutile-type phase (tetragonal SnO(2)) for Ni contents below 10 mol%. The mean crystallite size shows a progressive reduction with the Ni content. Room-temperature Raman spectra of Ni-doped SnO(2) nanoparticles show the presence of Raman active modes and modes activated by size effects. From the evolution of the A(1g) mode with the Ni content, a solubility limit at similar to 2 mol% was estimated. Below that content, Raman results are consistent with the occurrence of solid solution (ss) and surface segregation (seg.) of Ni ions. Above similar to 2 mol% Ni, the redshift of A(1g) mode suggests that the surface segregation of Ni ions takes place. Disorder-activated bands were determined and their integrated intensity evolution with the Ni content suggest that the solid-solution regime favors the increase of disorder; meanwhile, that disorder becomes weaker as the Ni content is increased. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Two different commercial crosslinked resins (Amberlite GT73 and Amberlite IRC748) were employed for anchoring silver. The -SH and -N(CH2COOH)2 groups, respectively, present on these resins were used for Ag+ chelation from an aqueous solution. The Ag+ ions were reduced with three different reductants: hydrazine, hydroxylamine, and formaldehyde (under an alkaline pH). The produced composites were characterized with thermogravimetry/differential thermogravimetry and scanning electron microscopy combined with a backscattered scanning electron detector. Energy-dispersive X-ray spectroscopy coupled to scanning electron microscopy allowed the observation of submicrometer particles of silver, and chemical microanalysis of emitted X-rays revealed the presence of metal on the internal and external surfaces of the composite microspheres. The amount of incorporated silver was determined by titration. The antibacterial activity of the silver/resin composites was determined toward 10(3)-10(7) cells/mL dilutions of the auxotrophic AB1157 Escherichia coli strain; the networks containing anchored submicrometer silver particles were completely bactericidal within a few minutes because of the combined action of silver and functional groups of the resins. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The influence of the addition of high-impact polystyrene (HIPS) on polypropylene (PP) photodegradation was studied with blends obtained by extrusion with and without styrene-butadiene-styrene (SBS) copolymer (10 wt % with respect to the dispersed phase). The concentrations of HIPS ranged from 10 to 30 wt %. The blends and pure materials were exposed for periods of up to 15 weeks of UV irradiation; their mechanical properties (tensile and impact), fracture surface, and melt flow indices were monitored. After 3 weeks of UV exposure, all of the materials presented mechanical properties of the same order of magnitude. However, for times of exposure greater than 3 weeks, an increasing concentration of HIPS resulted in a better photostability of PP. These results were explained in light of morphological observations. This increase of photostability was even greater when SBS was added to the blends. It was more difficult to measure the melt flow index of the binary PP/HIPS blends than that of PP for low concentrations of HIPS; this was most likely due to energy transfer between the blend domains during photodegradation. This phenomenon was not observed for the ternary blends. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 120: 770-779, 2011
Resumo:
TiAlN films were deposited on AISI O1 tool steel using a triode magnetron sputtering system. The bias voltage effect on the composition, thickness, crystallography, microstructure, hardness and adhesion strength was investigated. The coatings thickness and elemental composition analyses were carried out using scanning electron microscopy (SEM) together with energy dispersive X-ray (EDS). The re-sputtering effect due to the high-energy ions bombardment on the film surface influenced the coatings thickness. The films crystallography was investigated using X-ray diffraction characterization. The X-ray diffraction (XRD) data show that TiAlN coatings were crystallized in the cubic NaCl B1 structure, with orientations in the {111}, {200} {220} and {311} crystallographic planes. The surface morphology (roughness and grain size) of TiAlN coatings was investigated by atomic force microscopy (AFM). By increasing the substrate bias voltage from -40 to -150 V, hardness decreased from 32 GPa to 19 GPa. Scratch tester was used for measuring the critical loads and for measuring the adhesion. (C) 2011 Elsevier B. V. All rights reserved.
Resumo:
Ni-doped SnO(2) nanoparticles prepared by a polymer precursor method have been characterized structurally and magnetically. Ni doping (up to 10 mol%) does not significantly affect the crystalline structure of SnO(2), but stabilizes smaller particles as the Ni content is increased. A notable solid solution regime up to similar to 3 mol% of Ni, and a Ni surface enrichment for the higher Ni contents are found. The room temperature ferromagnetism with saturation magnetization (MS) similar to 1.2 x 10(-3) emu g(-1) and coercive field (H(C)) similar to 40 Oe is determined for the undoped sample, which is associated with the exchange coupling of the spins of electrons trapped in oxygen vacancies, mainly located on the surface of the particles. This ferromagnetism is enhanced as the Ni content increases up to similar to 3 mol%, where the Ni ions are distributed in a solid solution. Above this Ni content, the ferromagnetism rapidly decays and a paramagnetic behavior is observed. This finding is assigned to the increasing segregation of Ni ions (likely formed by interstitials Ni ions and nearby substitutional sites) on the particle surface, which modifies the magnetic behavior by reducing the available oxygen vacancies and/or the free electrons and favoring paramagnetic behavior.
Resumo:
Properties of hybrid films can be enhanced if their molecular architecture is controlled. In this paper, poly (p-phenylene vinylene) was mixed with stearic acid in order to form stable hybrid Langmuir monolayers. Surface properties of these films were investigated with measurements of surface pressure, and also with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The films were transferred from the air-water interface to solid supports through the Langmuir-Blodgett technique, and the viability of the film as optical device was investigated with fluorescence spectroscopy. Comparing the fluorescent spectra for the polymer in solution, as a casting film, and as an LB film, the emission bands for LB films were narrower and appeared at lower wavelengths. The interactions between the film components and the design for the LB film may take advantage of the method to immobilize luminescent polymers in mixed ultrathin films adsorbed in solid matrices. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The metastable phase diagram of the BCC-based ordering equilibria in the Ti-Fe system has been calculated using a truncated cluster expansion, through the combination of FP-LAPW and cluster variation method (CVM) in the irregular tetrahedron cluster approximation. The results are compared with phenomenological CVM assessments of the system and suggest that the value for the experimental formation enthalpy of the B2-TiFe compound should be significantly more negative than the currently assessed value. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The weathering behavior of polystyrene and polystyrene-montmorillonite composites containing 2.5, 5.0, and 7.5 wt% of montmorillonite (MMT) was investigated. Samples were exposed to UV radiation for periods of up to similar to 12 weeks and their molecular weight, chemical changes, and mechanical properties were monitored as a function of time. The addition of MMT was shown to improve the photostability of all composites investigated, probably because of a screen effect against UV radiation and barrier effect against diffusion of oxygen promoted by the silicate layers of MMT. Scanning electron microscopy of fracture surfaces of degraded samples showed that there is a degraded layer near the surface that provided a recovery of tensile strength of the samples.