995 resultados para Superconducting Qubits
Resumo:
超导螺线管广泛应用于核磁共振仪、粒子探测器等设备。本文设计了中心场值为3T,中心附近Φ30mm区域内均匀度达到1×10-4的超导螺线管。磁体线圈采用多芯NbTi-Cu复合超导线绕制,并利用铁轭屏蔽漏场。磁体采用温孔冷铁轭、全浸泡冷却方式结构。同时,为了减少辐射漏热,采用液氮冷屏、真空多层绝热结构。 本文重点对带有冷铁轭的超导螺线管的磁场进行了优化设计。设计过程中结合了专业磁场计算软件OPERA和多种优化方法。线圈采用六次槽型结构,利用遗传算法和优选法优化线圈尺寸;铁轭采用正交试验设计优化尺寸。 利用有限元软件ANSYS对超导磁体进行电磁力分析,并且对降温后线圈、支撑筒和箍筒的热应力进行了模拟计算。估算了支撑系统的传导漏热、磁体的辐射漏热以及剩余气体漏热。详细介绍了超导磁体绕制工艺,超导磁体液氦杜瓦的加工工艺,并且对杜瓦的绝热工艺进行了介绍。最后介绍了超导螺线管的总体加工进展
Resumo:
In this paper, hydrothermal synthesized Fe3O4 microspheres have been encapsulated with nonporous silica and a further layer of ordered mesoporous silica through a simple sol-gel process. The surface of the outer silica shell was further functionalized by the deposition of YVO4:Eu3+ phosphors, realizing a sandwich structured material with mesoporous, magnetic and luminescent properties. The multifunctional system was used as drug carrier to investigate the storage and release properties using ibuprofen (IBU) as model drug by the surface modification. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), Fourier transform infrared spectroscopy (FT-IR), N-2 adsorption/desorption, photoluminescence (PL) spectra, and superconducting quantum interference device (SQUID) were used to characterized the samples.
Resumo:
The Mg-8Zn-8Al-4RE (RE = mischmetal, mass%) magnesium alloy was prepared by using casting method. The microstructure and mechanical properties of as-cast alloy, solid solution alloy and aged alloy samples have been investigated. Optical microscopy, X-ray diffractometery and scanning electron microscope attached energy spectrometer were used to characterize the microstructure and phase composition for the alloy. Net shaped tau-Mg-32(Al,Zn)(49) phase was obtained at the grain boundary, and needle-like or blocky Al11RE3 phase disperses in grain boundary and alpha-Mg matrix. The tau-Mg-32(Al,Zn)(49) phase disappeared during solution treatment and a new phase of Al(2)CeZn2 formed during subsequent age treatment. The mechanical properties were performed by universal testing machine at room temperature, 150 degrees C and 200 degrees C, separately. The ultimate tensile strength of as-cast alloy is lower compared to an age treatment alloy at 200 degrees C for 12h. The strengths decreased with enhancing test temperature, but elongation has not been effect by age treatment.
Resumo:
Anew class of bifunctional architecture combining the useful functions of superparamagnetism and terbium complex luminescence into one material has been prepared via two main steps by a modified Stober method and the layer-by-layer (LbL) assembly technique. The obtained bifunctional nanocomposites exhibit superparamagnetic behavior, high fluorescence intensity, and color purity. The architecture has been characterized by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), UV-vis absorption and emission spectroscopy, X-ray diffraction, and superconducting quantum interference device (SQUID) magnetometry.
Resumo:
The dilute magnetic semiconductor of Sn1-x-yMnxFeyO2 (0 <= x <= 0.10, 0 <= y <= 0.10) Were syhthesized with the hydrothermal method using SnCl4, Mn(CH3COO)(2) center dot 4H(2)O and FeCl3 center dot 6H(2)O as the raw materials. The structure, morphologies and magnetic properties of the sample were characterized via X-ray powder diffractometer(XRD), transmission electron microscopy(TEM), Raman spectrum and superconducting and quantum interference device(SQUIT), and Mossbeaur spectrum. No secondary phase was found in the XRD spectrum. The morphology of the samples is affected by the kind or the mount of transition metal. The local vibrating model-of Mn Positioned SnO2 sites was found in Raman spectrum. The measured magnetic results indicate that when x = 0.10, y = 0, the sample exhibits strong magnetization in low-temperature (5 K), but the magnetization decrease rapidly at room. temperature; In contrast, when x = 0, y = 0.1, the sample's magnetization and coercivity are both small, but being temperature independent. Mossbeaur spectra indicates that part of the Fe is ferromagnetic coupled, and the simulating results indicate that the ferromagnetic character is intrinsic.
Resumo:
In the Bi-based high-T(c) superconductors, three superconducting transition points were observed above the liquid-N2 temperature range. Allotropes of the 2212 phase were found. These allotropes were metastable and can interchange with the 2212 phase, and their T(c)'s vary from approximately 85 to approximately 100 K.
Resumo:
EuBa2(Cu1-xFex)3O7-y has been investigated by the Fe-57 and Eu-151 Mossbauer effect. The Fe-57 Mossbauer spectra of the EuBa2(Cu1xFex)3O7-y without or with DC electric current (the current strength I = 0.5A) around the superconducting transition temperature have been measured. The results indicate that the isomer shift (IS) and the quadrupole splitting (QS) of the Fe replacing the Cu(2) vary neither with increasing the Fe content nor with the small DC eletric current passing the superconductor and that the IS and the QS of the Fe replacing the Cu(1) vary with the Fe content. Especially, the IS and the QS of the Fe (D3) replacing the Cu(1) are changed when the small electric current passes the superconductor at 80K.
Resumo:
The effect of doping with various amount of Sb (0.06-0.32) to (Bi,Pb):Sr:Ca:Cu = 1:1:1:1 system were studied with XRD and Tc measurements. The presence of Sb promotes the conversion of low Tc phase (2212 phase) to high Tc phase (2223 phase) and at around Sb = 0.18 the 2212 phase nearly completely disappears; but at the same time a new phase of unknown structure appears even with Sb = 0.06 showing that the incorporation of Sb into the Bi-based superconducting phase is of very low concentration. Tc measurements show that the optimum concentration of Sb-doping is around 0.10 and that unknown phase has an adverse effect to the superconducting properties; a composition disproportion at the surface of pellet was observed.
Resumo:
We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.
Resumo:
We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillae, only a few input states can set all the control qubits of a Toffoli gate to 1. This can be used to selectively remove large Toffoli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof that parity cannot be computed by constant depth quantum circuits without ancillæ.
Resumo:
Practical realisation of quantum information science is a challenge being addressed by researchers employing various technologies. One of them is based on quantum dots (QD), usually referred to as artificial atoms. Being capable to emit single and polarization entangled photons, they are attractive as sources of quantum bits (qubits) which can be relatively easily integrated into photonic circuits using conventional semiconductor technologies. However, the dominant self-assembled QD systems suffer from asymmetry related problems which modify the energetic structure. The main issue is the degeneracy lifting (the fine-structure splitting, FSS) of an optically allowed neutral exciton state which participates in a polarization-entanglement realisation scheme. The FSS complicates polarization-entanglement detection unless a particular FSS manipulation technique is utilized to reduce it to vanishing values, or a careful selection of intrinsically good candidates from the vast number of QDs is carried out, preventing the possibility of constructing vast arrays of emitters on the same sample. In this work, site-controlled InGaAs QDs grown on (111)B oriented GaAs substrates prepatterned with 7.5 μm pitch tetrahedrons were studied in order to overcome QD asymmetry related problems. By exploiting an intrinsically high rotational symmetry, pyramidal QDs were shown as polarization-entangled photon sources emitting photons with the fidelity of the expected maximally entangled state as high as 0.721. It is the first site-controlled QD system of entangled photon emitters. Moreover, the density of such emitters was found to be as high as 15% in some areas: the density much higher than in any other QD system. The associated physical phenomena (e.g., carrier dynamic, QD energetic structure) were studied, as well, by different techniques: photon correlation spectroscopy, polarization-resolved microphotoluminescence and magneto-photoluminescence.
Resumo:
We obtain an upper bound on the time available for quantum computation for a given quantum computer and decohering environment with quantum error correction implemented. First, we derive an explicit quantum evolution operator for the logical qubits and show that it has the same form as that for the physical qubits but with a reduced coupling strength to the environment. Using this evolution operator, we find the trace distance between the real and ideal states of the logical qubits in two cases. For a super-Ohmic bath, the trace distance saturates, while for Ohmic or sub-Ohmic baths, there is a finite time before the trace distance exceeds a value set by the user. © 2010 The American Physical Society.
Resumo:
Nonlocal gate operation is based on sharing an ancillary pair of qubits in perfect entanglement. When the ancillary pair is partially entangled, the efficiency of gate operation drops. Using general transformations, we devise probabilistic nonlocal gates, which perform the nonlocal operation conclusively when the ancillary pair is only partially entangled. We show that a controlled purification protocol can be implemented by the probabilistic nonlocal operation.
Resumo:
Entanglement is an important ingredient for quantum information processing. We discuss some sources of entanglement, namely a beam splitter and a thermal field. For the generation of entangled continuous-variable states, we consider a beam splitter and find some conditions for input fields to see entanglement in the output. While a beam splitter is a unitary device to generate an entangled state for a bipartite continuous-variable system, a thermal field is shown to mediate entanglement of two qubits.
Resumo:
A thermal field, which frequently appears in problems of decoherence, provides us with minimal information about the field. We study the interaction of the thermal field and a quantum system composed of two qubits and find that such a chaotic field with minimal information can nevertheless entangle qubits that are prepared initially in a separable state. This simple model of a quantum register interacting with a noisy environment allows us to understand how memory of the environment affects the state of a quantum register.