962 resultados para Structures of the text
Resumo:
The Håkon Mosby Mud Volcano is a natural laboratory to study geological, geochemical, and ecological processes related to deep-water mud volcanism. High resolution bathymetry of the Håkon Mosby Mud Volcano was recorded during RV Polarstern expedition ARK-XIX/3 utilizing the multibeam system Hydrosweep DS-2. Dense spacing of the survey lines and slow ship speed (5 knots) provided necessary point density to generate a regular 10 m grid. Generalization was applied to preserve and represent morphological structures appropriately. Contour lines were derived showing detailed topography at the centre of the Håkon Mosby Mud Volcano and generalized contours in the vicinity. We provide a brief introduction to the Håkon Mosby Mud Volcano area and describe in detail data recording and processing methods, as well as the morphology of the area. Accuracy assessment was made to evaluate the reliability of a 10 m resolution terrain model. Multibeam sidescan data were recorded along with depth measurements and show reflectivity variations from light grey values at the centre of the Håkon Mosby Mud Volcano to dark grey values (less reflective) at the surrounding moat.
Resumo:
As a consequence of anthropogenic CO2-driven ocean acidification (OA), coastal waters are becoming increasingly challenging for calcifiers due to reductions in saturation states of calcium carbonate (CaCO3) minerals. The response of calcification rate is one of the most frequently investigated symptoms of OA. However, OA may also result in poor quality calcareous products through impaired calcification processes despite there being no observed change in calcification rate. The mineralogy and ultrastructure of the calcareous products under OA conditions may be altered, resulting in changes to the mechanical properties of calcified structures. Here, the warm water biofouling tubeworm, Hydroides elegans, was reared from larva to early juvenile stage at the aragonite saturation state (Omega A) for the current pCO2 level (ambient) and those predicted for the years 2050, 2100 and 2300. Composition, ultrastructure and mechanical strength of the calcareous tubes produced by those early juvenile tubeworms were examined using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and nanoindentation. Juvenile tubes were composed primarily of the highly soluble CaCO3 mineral form, aragonite. Tubes produced in seawater with aragonite saturation states near or below one had significantly higher proportions of the crystalline precursor, amorphous calcium carbonate (ACC) and the calcite/aragonite ratio dramatically increased. These alterations in tube mineralogy resulted in a holistic deterioration of the tube hardness and elasticity. Thus, in conditions where Omega A is near or below one, the aragonite-producing juvenile tubeworms may no longer be able to maintain the integrity of their calcification products, and may result in reduced survivorship due to the weakened tube protection.
Resumo:
Particular features of tectonic structure and anomalous distribution of geothermal, geomagnetic, and gravity fields in the region of the Sea of Okhotsk are considered. On the basis of heat flow data, ages of large-scale structures in the Sea of Okhotsk are estimated at 65 Ma for the Central Okhotsk Rise and 36 Ma for the South Okhotsk Basin. Age of the South Okhotsk Basin is confirmed by data on kinematics and corresponds to 50 km thickness of the lithosphere. This is in accordance with thickness value obtained by magnetotelluric soundings. Comparative analysis of model geothermal background and measured heat flow values on the Akademii Nauk Rise is performed. Analysis points to abnormally high (~20%) measured heat flow agrees with high negative gradient of gravity anomalies. Estimates of deep heat flow and basement age of riftogenic basins in the Sea of Okhotsk were carried out in the following areas: Deryugin Basin (18 Ma, Early Miocene), TINRO Basin (12 Ma, Middle Miocene), and West Kamchatka Basin (23 Ma, Late Oligocene). Temperatures at boundaries of the main lithological complexes of the sedimentary cover are calculated and zones of oil and gas generation are defined. On the basis of geothermal, magnetic, structural, and other geological-geophysical data a kinematic model of the region of the Sea of Okhotsk for period of 36 Ma was calculated and constructed.
Resumo:
The increase in atmospheric CO2 due to anthropogenic activity results in an acidification of the surface waters of the oceans. The impact of these chemical changes depends on the considered organisms. In particular, it depends on the ability of the organism to control the pH of its inner fluids. Among echinoderms, this ability seems to differ significantly according to species or taxa. In the present paper, we investigated the buffer capacity of the coelomic fluid in different echinoderm taxa as well as factors modifying this capacity. Euechinoidea (sea urchins except Cidaroidea) present a very high buffer capacity of the coelomic fluid (from 0.8 to 1.8 mmol/kg SW above that of seawater), while Cidaroidea (other sea urchins), starfish and holothurians have a significantly lower one (from -0.1 to 0.4 mmol/kg SW compared to seawater). We hypothesize that this is linked to the more efficient gas exchange structures present in the three last taxa, whereas Euechinoidea evolved specific buffer systems to compensate lower gas exchange abilities. The constituents of the buffer capacity and the factors influencing it were investigated in the sea urchin Paracentrotus lividus and the starfish Asterias rubens. Buffer capacity is primarily due to the bicarbonate buffer system of seawater (representing about 63% for sea urchins and 92% for starfish). It is also partly due to coelomocytes present in the coelomic fluid (around 8% for both) and, in P. lividus only, a compound of an apparent size larger than 3 kDa is involved (about 15%). Feeding increased the buffer capacity in P. lividus (to a difference with seawater of about 2.3 mmol/kg SW compared to unfed ones who showed a difference of about 0.5 mmol/kg SW) but not in A. rubens (difference with seawater of about 0.2 for both conditions). In P. lividus, decreased seawater pH induced an increase of the buffer capacity of individuals maintained at pH 7.7 to about twice that of the control individuals and, for those at pH 7.4, about three times. This allowed a partial compensation of the coelomic fluid pH for individuals maintained at pH 7.7 but not for those at pH 7.4.
Resumo:
Ground penetrating radar (GPR) and capacitive coupled resistivity (CCR) measurements were conducted in order to image subsurface structures in the Orkhon Valley, Central Mongolia. The data are extended by information from drill cores to the entire transects distinguishing different sedimentary environments in the valley. The Orkhon Valley is part of the high sensitive Steppe region in Central Mongolia, one of the most important cultural landscapes in Central Asia. There, archaeological, geoarchaeological and sedimentological research aims to reconstruct the landscape evolution and the interaction between man and environment during the last millennia since the first settlement. In May 2009 and 2010 geophysical surveys have been conducted including transects with lengths between 1.5 and 30 km crossing the entire valley and a kilometre-scaled grid in the southern part of the investigation area. The geoelectrical and GPR data revealed the existence of two layers characterized by different resistivity values and radar reflectors. The two layers do not only represent material contrasts, but also reflect the influence of sporadic permafrost which occurs in several areas of Mongolia. The results help to reconstruct the evolution of the braided Orkhon River and therefore give important hints to understand the environmental history of the Orkhon Valley.
Resumo:
The Regab pockmark is a large cold seep area located 10 km north of the Congo deep sea channel at about 3160 m water depth. The associated ecosystem hosts abundant fauna, dominated by chemosynthetic species such as the mussel Bathymodiolus aff. boomerang, vestimentiferan tubeworm Escarpia southwardae, and vesicomyid clams Laubiericoncha chuni and Christineconcha regab. The pockmark was visited during the West African Cold Seeps (WACS) cruise with RV Pourquoi Pas? in February 2011, and a 14,000-m**2 high-resolution videomosaic was constructed to map the most populated area and to describe the distribution of the dominant megafauna (mussels, tubeworms and clams). The results are compared with previous published works, which also included a videomosaic in the same area of the pockmark, based on images of the BIOZAIRE cruise in 2001. The 10-year variation of the faunal distribution is described and reveals that the visible abundance and distribution of the dominant megafaunal populations at Regab have not changed significantly, suggesting that the overall methane and sulfide fluxes that reach the faunal communities have been stable. Nevertheless, small and localized distribution changes in the clam community indicate that it is exposed to more transient fluxes than the other communities. Observations suggest that the main megafaunal aggregations at Regab are distributed around focused zones of high flux of methane-enriched fluids likely related to distinct smaller pockmark structures that compose the larger Regab pockmark. Although most results are consistent with the existing successional models for seep communities, some observations in the distribution of the Regab mussel population do not entirely fit into these models. This is likely due to the high heterogeneity of this site formed by the coalescence of several pockmarks. We hypothesize that the mussel distribution at Regab could also be controlled by the occurrence of zones of both intense methane fluxes and reduced efficiency of the anaerobic oxidation of methane possibly limiting tubeworm colonization.
(Table 3) Structure of bacterial poplations from surface sediments of the Sierra Leone Abyssal Plain
Resumo:
During the Equamarge II cruise (February 4 to March 21, 1988), on board the R. V. "Jean Charcot", 12.500 kms of continuous geophysical profiling have been recorded along three sectors of the Equatorial Atlantic. Two segments ofthe West African transform margin have been intensively surveyed off Guinea and off Ivory Coast and Ghana. The active Romanche fracture zone has been surveyed in details on a distance of about 100 kms. These data (multibeam bathymetry, continuous seismic profiling, magnetism and gravity) have been supplemented by 16 geological stations (dredging and coring). This report gives a synthetic review of the onboard analysis and allows to better understand the geological structures of the three surveyed areas.
Resumo:
Compositions, structures, and microstructures of different types of phosphorites and poorly phosphatized rocks from low atolls in the near-equatorial part of the Western Indian Ocean are described. The rocks were examined under optical and scanning microscopes using microprobe techniques and etching of selected samples with weak solvents as well as with the help of chemical analyses. It is proved that phosphorites have been formed owing to the uneven phosphatization of primary carbonate rocks; degree of their phosphatization ranges from traces to 40% P2O5. In the phosphorites numerous organic remains were encountered; they included fragments of plankton, debris of tortoise shells, and coccoidal and filamentous bacteria-like formations. It is suggested that the phosphorites formed due to high local biological productivity over the outer edges of coral reefs and are not related to guano accumulation or to endoupwelling.
(Table 4) Sedimentologic characteristics and a summary of diagenetic structures of ODP Hole 114-699A
Resumo:
Ocean acidification (OA) is anticipated to interact with the more frequently occurring hypoxic conditions in shallow coastal environments. These could exert extreme stress on the barnacle-dominated fouling communities. However, the interactive effect of these two emerging stressors on early-life stages of fouling organisms remains poorly studied. We investigated both the independent and interactive effect of low pH (7.6 vs. ambient 8.2) and low oxygen (LO; 3 mg/l vs. ambient 5 mg/l) from larval development through settlement (attachment and metamorphosis) and juvenile growth of the widespread fouling barnacle, Balanus amphitrite. In particular, we focused on the critical transition between planktonic and benthic phases to examine potential limiting factors (i.e. larval energy storage and the ability to perceive cues) that may restrain barnacle recruitment under the interactive stressors. LO significantly slowed naupliar development, while the interaction with low pH (LO-LP) seemed to alleviate the negative effect. However, 20-50% of the larvae became cyprid within 4 d post-hatching, regardless of treatment. Under the two stressors interaction (LO-LP), the barnacle larvae increased their feeding rate, which may explain why their energy reserves at competency were not different from any other treatment. In the absence of a settlement-inducing cue, a significantly lower percentage of cyprids (15% lower) settled in LO and LO-LP. The presence of an inducing cue, however, elevated attachment up to 50-70% equally across all treatments. Post-metamorphic growth was not altered, although the condition index was different between LO and LO-LP treatments, potentially indicating that less and/or weaker calcified structures were developed when the two stressors were experienced simultaneously. LO was the major driver for the responses observed and its interaction with low pH should be considered in future studies to avoid underestimating the sensitivity of biofouling species to OA and associated climate change stressors.
Resumo:
We use multifractal analysis (MFA) to investigate how the Rényi dimensions of the solid mass and the pore space in porous structures are related to each other. To our knowledge, there is no investigation about the relationship of Rényi or generalized dimensions of two phases of the same structure.