797 resultados para Statistical Learning Theory.
Resumo:
In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed
Resumo:
Purpose – The purpose of this paper is to analyze how team management affects team-learning activities. Design/methodology/approach – The authors empirically study 68 teams as they operate in the natural business context of a major Spanish bank. Quantitative research utilizing multiple regression analyses is used to test hypotheses. Findings – The leadership behaviour (consideration, initiation of structure) displayed by the team leader plays a key role in facilitating team learning. Team leader behaviour characterised by consideration and in particular by initiation of structure are both positively related to team-learning activities. Cross-training of team members also contributes to team-learning behaviour. Research limitations/implications – A specific setting may limit the generalizability of findings. Further research may accordingly investigate to what extent these results can be generalized to other settings or other aspects of team learning. Practical implications – The leadership style adopted by the team leader, as well as cross-training of members, affect team-learning activities. These results link leadership theory to collective learning in teams and organizations, and suggest ways leaders can contribute to improved learning. Originality/value – The study provides new insight into how management of teams facilitates team-learning activities. While consideration is somewhat related to team learning, initiation of structure as well as cross-training appear as key variables.
Resumo:
This paper aims to outline a theory-based Content and Language Integrated Learning course and to establish the rationale for adopting a holistic approach to the teaching of languages in tertiary education. Our work focuses on the interdependence between Content and Language Integrated Learning (CLIL), and the use of Information and Communication Technologies (ICT), in particular regarding the learning of English within the framework of Telecommunications Engineering. The study first analyses the diverse components of the instructional approach and the extent to which this approach interrelates with technologies within the context of what we have defined as a holistic experience, since it also aims to develop a set of generic competences or transferable skills. Second, an example of a course project framed in this holistic approach is described in order to exemplify the specific actions suggested for learner autonomy and CLIL. The approach provides both an adequate framework as well as the conditions needed to carry out a lifelong learning experience within our context, a Spanish School of Engineering. In addition to specialized language and content, the approach integrates the learning of skills and capacities required by the new plans that have been established following the Bologna Declaration in 1999.
Resumo:
This study suggests a theoretical framework for improving the teaching/ learning process of English employed in the Aeronautical discourse that brings together cognitive learning strategies, Genre Analysis and the Contemporary theory of Metaphor (Lakoff and Johnson 1980; Lakoff 1993). It maintains that cognitive strategies such as imagery, deduction, inference and grouping can be enhanced by means of metaphor and genre awareness in the context of content based approach to language learning. A list of image metaphors and conceptual metaphors which comes from the terminological database METACITEC is provided. The metaphorical terms from the area of Aeronautics have been taken from specialised dictionaries and have been categorised according to the conceptual metaphors they respond to, by establishing the source domains and the target domains, as well as the semantic networks found. This information makes reference to the internal mappings underlying the discourse of aeronautics reflected in five aviation accident case studies which are related to accident reports from the National Transportation Safety Board (NTSB) and provides an important source for designing language teaching tasks. La Lingüística Cognitiva y el Análisis del Género han contribuido a la mejora de la enseñanza de segundas lenguas y, en particular, al desarrollo de la competencia lingüística de los alumnos de inglés para fines específicos. Este trabajo pretende perfeccionar los procesos de enseñanza y el aprendizaje del lenguaje empleado en el discurso aeronáutico por medio de la práctica de estrategias cognitivas y prestando atención a la Teoría del análisis del género y a la Teoría contemporánea de la metáfora (Lakoff y Johnson 1980; Lakoff 1993). Con el propósito de crear recursos didácticos en los que se apliquen estrategias metafóricas, se ha elaborado un listado de metáforas de imagen y de metáforas conceptuales proveniente de la base de datos terminológica META-CITEC. Estos términos se han clasificado de acuerdo con las metáforas conceptuales y de imagen existentes en esta área de conocimiento. Para la enseñanza de este lenguaje de especialidad, se proponen las correspondencias y las proyecciones entre el dominio origen y el dominio meta que se han hallado en los informes de accidentes aéreos tomados de la Junta federal de la Seguridad en el Transporte (NTSB)
Resumo:
El principio de Teoría de Juegos permite desarrollar modelos estocásticos de patrullaje multi-robot para proteger infraestructuras criticas. La protección de infraestructuras criticas representa un gran reto para los países al rededor del mundo, principalmente después de los ataques terroristas llevados a cabo la década pasada. En este documento el termino infraestructura hace referencia a aeropuertos, plantas nucleares u otros instalaciones. El problema de patrullaje se define como la actividad de patrullar un entorno determinado para monitorear cualquier actividad o sensar algunas variables ambientales. En esta actividad, un grupo de robots debe visitar un conjunto de puntos de interés definidos en un entorno en intervalos de tiempo irregulares con propósitos de seguridad. Los modelos de partullaje multi-robot son utilizados para resolver este problema. Hasta el momento existen trabajos que resuelven este problema utilizando diversos principios matemáticos. Los modelos de patrullaje multi-robot desarrollados en esos trabajos representan un gran avance en este campo de investigación. Sin embargo, los modelos con los mejores resultados no son viables para aplicaciones de seguridad debido a su naturaleza centralizada y determinista. Esta tesis presenta cinco modelos de patrullaje multi-robot distribuidos e impredecibles basados en modelos matemáticos de aprendizaje de Teoría de Juegos. El objetivo del desarrollo de estos modelos está en resolver los inconvenientes presentes en trabajos preliminares. Con esta finalidad, el problema de patrullaje multi-robot se formuló utilizando conceptos de Teoría de Grafos, en la cual se definieron varios juegos en cada vértice de un grafo. Los modelos de patrullaje multi-robot desarrollados en este trabajo de investigación se han validado y comparado con los mejores modelos disponibles en la literatura. Para llevar a cabo tanto la validación como la comparación se ha utilizado un simulador de patrullaje y un grupo de robots reales. Los resultados experimentales muestran que los modelos de patrullaje desarrollados en este trabajo de investigación trabajan mejor que modelos de trabajos previos en el 80% de 150 casos de estudio. Además de esto, estos modelos cuentan con varias características importantes tales como distribución, robustez, escalabilidad y dinamismo. Los avances logrados con este trabajo de investigación dan evidencia del potencial de Teoría de Juegos para desarrollar modelos de patrullaje útiles para proteger infraestructuras. ABSTRACT Game theory principle allows to developing stochastic multi-robot patrolling models to protect critical infrastructures. Critical infrastructures protection is a great concern for countries around the world, mainly due to terrorist attacks in the last decade. In this document, the term infrastructures includes airports, nuclear power plants, and many other facilities. The patrolling problem is defined as the activity of traversing a given environment to monitoring any activity or sensing some environmental variables If this activity were performed by a fleet of robots, they would have to visit some places of interest of an environment at irregular intervals of time for security purposes. This problem is solved using multi-robot patrolling models. To date, literature works have been solved this problem applying various mathematical principles.The multi-robot patrolling models developed in those works represent great advances in this field. However, the models that obtain the best results are unfeasible for security applications due to their centralized and predictable nature. This thesis presents five distributed and unpredictable multi-robot patrolling models based on mathematical learning models derived from Game Theory. These multi-robot patrolling models aim at overcoming the disadvantages of previous work. To this end, the multi-robot patrolling problem was formulated using concepts of Graph Theory to represent the environment. Several normal-form games were defined at each vertex of a graph in this formulation. The multi-robot patrolling models developed in this research work have been validated and compared with best ranked multi-robot patrolling models in the literature. Both validation and comparison were preformed by using both a patrolling simulator and real robots. Experimental results show that the multirobot patrolling models developed in this research work improve previous ones in as many as 80% of 150 cases of study. Moreover, these multi-robot patrolling models rely on several features to highlight in security applications such as distribution, robustness, scalability, and dynamism. The achievements obtained in this research work validate the potential of Game Theory to develop patrolling models to protect infrastructures.
Resumo:
El aprendizaje automático y la cienciometría son las disciplinas científicas que se tratan en esta tesis. El aprendizaje automático trata sobre la construcción y el estudio de algoritmos que puedan aprender a partir de datos, mientras que la cienciometría se ocupa principalmente del análisis de la ciencia desde una perspectiva cuantitativa. Hoy en día, los avances en el aprendizaje automático proporcionan las herramientas matemáticas y estadísticas para trabajar correctamente con la gran cantidad de datos cienciométricos almacenados en bases de datos bibliográficas. En este contexto, el uso de nuevos métodos de aprendizaje automático en aplicaciones de cienciometría es el foco de atención de esta tesis doctoral. Esta tesis propone nuevas contribuciones en el aprendizaje automático que podrían arrojar luz sobre el área de la cienciometría. Estas contribuciones están divididas en tres partes: Varios modelos supervisados (in)sensibles al coste son aprendidos para predecir el éxito científico de los artículos y los investigadores. Los modelos sensibles al coste no están interesados en maximizar la precisión de clasificación, sino en la minimización del coste total esperado derivado de los errores ocasionados. En este contexto, los editores de revistas científicas podrían disponer de una herramienta capaz de predecir el número de citas de un artículo en el fututo antes de ser publicado, mientras que los comités de promoción podrían predecir el incremento anual del índice h de los investigadores en los primeros años. Estos modelos predictivos podrían allanar el camino hacia nuevos sistemas de evaluación. Varios modelos gráficos probabilísticos son aprendidos para explotar y descubrir nuevas relaciones entre el gran número de índices bibliométricos existentes. En este contexto, la comunidad científica podría medir cómo algunos índices influyen en otros en términos probabilísticos y realizar propagación de la evidencia e inferencia abductiva para responder a preguntas bibliométricas. Además, la comunidad científica podría descubrir qué índices bibliométricos tienen mayor poder predictivo. Este es un problema de regresión multi-respuesta en el que el papel de cada variable, predictiva o respuesta, es desconocido de antemano. Los índices resultantes podrían ser muy útiles para la predicción, es decir, cuando se conocen sus valores, el conocimiento de cualquier valor no proporciona información sobre la predicción de otros índices bibliométricos. Un estudio bibliométrico sobre la investigación española en informática ha sido realizado bajo la cultura de publicar o morir. Este estudio se basa en una metodología de análisis de clusters que caracteriza la actividad en la investigación en términos de productividad, visibilidad, calidad, prestigio y colaboración internacional. Este estudio también analiza los efectos de la colaboración en la productividad y la visibilidad bajo diferentes circunstancias. ABSTRACT Machine learning and scientometrics are the scientific disciplines which are covered in this dissertation. Machine learning deals with the construction and study of algorithms that can learn from data, whereas scientometrics is mainly concerned with the analysis of science from a quantitative perspective. Nowadays, advances in machine learning provide the mathematical and statistical tools for properly working with the vast amount of scientometrics data stored in bibliographic databases. In this context, the use of novel machine learning methods in scientometrics applications is the focus of attention of this dissertation. This dissertation proposes new machine learning contributions which would shed light on the scientometrics area. These contributions are divided in three parts: Several supervised cost-(in)sensitive models are learned to predict the scientific success of articles and researchers. Cost-sensitive models are not interested in maximizing classification accuracy, but in minimizing the expected total cost of the error derived from mistakes in the classification process. In this context, publishers of scientific journals could have a tool capable of predicting the citation count of an article in the future before it is published, whereas promotion committees could predict the annual increase of the h-index of researchers within the first few years. These predictive models would pave the way for new assessment systems. Several probabilistic graphical models are learned to exploit and discover new relationships among the vast number of existing bibliometric indices. In this context, scientific community could measure how some indices influence others in probabilistic terms and perform evidence propagation and abduction inference for answering bibliometric questions. Also, scientific community could uncover which bibliometric indices have a higher predictive power. This is a multi-output regression problem where the role of each variable, predictive or response, is unknown beforehand. The resulting indices could be very useful for prediction purposes, that is, when their index values are known, knowledge of any index value provides no information on the prediction of other bibliometric indices. A scientometric study of the Spanish computer science research is performed under the publish-or-perish culture. This study is based on a cluster analysis methodology which characterizes the research activity in terms of productivity, visibility, quality, prestige and international collaboration. This study also analyzes the effects of collaboration on productivity and visibility under different circumstances.
Resumo:
As empresas que almejam garantir e melhorar sua posição dentro de em um mercado cada vez mais competitivo precisam estar sempre atualizadas e em constante evolução. Na busca contínua por essa evolução, investem em projetos de Pesquisa & Desenvolvimento (P&D) e em seu capital humano para promover a criatividade e a inovação organizacional. As pessoas têm papel fundamental no desenvolvimento da inovação, mas para que isso possa florescer de forma constante é preciso comprometimento e criatividade para a geração de ideias. Criatividade é pensar o novo; inovação é fazer acontecer. Porém, encontrar pessoas com essas qualidades nem sempre é tarefa fácil e muitas vezes é preciso estimular essas habilidades e características para que se tornem efetivamente criativas. Os cursos de graduação podem ser uma importante ferramenta para trabalhar esses aspectos, características e habilidades, usando métodos e práticas de ensino que auxiliem no desenvolvimento da criatividade, pois o ambiente ensino-aprendizagem pesa significativamente na formação das pessoas. O objetivo deste estudo é de identificar quais fatores têm maior influência sobre o desenvolvimento da criatividade em um curso de graduação em administração, analisando a influência das práticas pedagógicas dos docentes e as barreiras internas dos discentes. O referencial teórico se baseia principalmente nos trabalhos de Alencar, Fleith, Torrance e Wechsler. A pesquisa transversal de abordagem quantitativa teve como público-alvo os alunos do curso de Administração de uma universidade confessional da Grande São Paulo, que responderam 465 questionários compostos de três escalas. Para as práticas docentes foi adaptada a escala de Práticas Docentes em relação à Criatividade. Para as barreiras internas foi adaptada a escala de Barreiras da Criatividade Pessoal. Para a análise da percepção do desenvolvimento da criatividade foi construída e validada uma escala baseada no referencial de características de uma pessoa criativa. As análises estatísticas descritivas e fatoriais exploratórias foram realizadas no software Statistical Package for the Social Sciences (SPSS), enquanto as análises fatoriais confirmatórias e a mensuração da influência das práticas pedagógicas e das barreiras internas sobre a percepção do desenvolvimento da criatividade foram realizadas por modelagem de equação estrutural utilizando o algoritmo Partial Least Squares (PLS), no software Smart PLS 2.0. Os resultados apontaram que as práticas pedagógicas e as barreiras internas dos discentes explicam 40% da percepção de desenvolvimento da criatividade, sendo as práticas pedagógicas que exercem maior influencia. A pesquisa também apontou que o tipo de temática e o período em que o aluno está cursando não têm influência sobre nenhum dos três construtos, somente o professor influencia as práticas pedagógicas.
Resumo:
Este estudo teve como objetivo principal analisar a relação entre a Liderança Transformacional, a Conversão do Conhecimento e a Eficácia Organizacional. Foram considerados como pressupostos teóricos conceitos consolidados sobre os temas desta relação, além de recentes pesquisas já realizadas em outros países e contextos organizacionais. Com base nisto identificou-se potencial estudo de um modelo que relacionasse estes três conceitos. Para tal considera-se que as organizações que buscam atingir Vantagem Competitiva e incorporam a Knowledge-Based View possam conquistar diferenciação frente a seus concorrentes. Nesse contexto o conhecimento ganha maior destaque e papel protagonista nestas organizações. Dessa forma criar conhecimento através de seus colaboradores, passa a ser um dos desafios dessas organizações ao passo que sugere melhoria de seus indicadores Econômicos, Sociais, Sistêmicos e Políticos, o que se define por Eficácia Organizacional. Portanto os modos de conversão do conhecimento nas organizações, demonstram relevância, uma vez que se cria e se converte conhecimentos através da interação entre o conhecimento existente de seus colaboradores. Essa conversão do conhecimento ou modelo SECI possui quatro modos que são a Socialização, Externalização, Combinação e Internalização. Nessa perspectiva a liderança nas organizações apresenta-se como um elemento capaz de influenciar seus colaboradores, propiciando maior dinâmica ao modelo SECI de conversão do conhecimento. Se identifica então na liderança do tipo Transformacional, características que possam influenciar colaboradores e entende-se que esta relação entre a Liderança Transformacional e a Conversão do Conhecimento possa ter influência positiva nos indicadores da Eficácia Organizacional. Dessa forma esta pesquisa buscou analisar um modelo que explorasse essa relação entre a liderança do tipo Transformacional, a Conversão do Conhecimento (SECI) e a Eficácia Organizacional. Esta pesquisa teve o caráter quantitativo com coleta de dados através do método survey, obtendo um total de 230 respondentes válidos de diferentes organizações. O instrumento de coleta de dados foi composto por afirmativas relativas ao modelo de relação pesquisado com um total de 44 itens. O perfil de respondentes concentrou-se entre 30 e 39 anos de idade, com a predominância de organizações privadas e de departamentos de TI/Telecom, Docência e Recursos Humanos respectivamente. O tratamento dos dados foi através da Análise Fatorial Exploratória e Modelagem de Equações Estruturais via Partial Least Square Path Modeling (PLS-PM). Como resultado da análise desta pesquisa, as hipóteses puderam ser confirmadas, concluindo que a Liderança Transformacional apresenta influência positiva nos modos de Conversão do Conhecimento e que; a Conversão do Conhecimento influencia positivamente na Eficácia Organizacional. Ainda, concluiu-se que a percepção entre os respondentes não apresenta resultado diferente sobre o modelo desta pesquisa entre quem possui ou não função de liderança.
Resumo:
Submitted ACKNOWLEDGMENTS T. B. acknowledges the financial support from SERB, Department of Science and Technology (DST), India [Project Grant No.: SB/FTP/PS-005/2013]. D. G. acknowledges DST, India, for providing support through the INSPIRE fellowship. J. K. acknowledges Government of the Russian Federation (Agreement No. 14.Z50.31.0033 with Institute of Applied Physics RAS).
Resumo:
A “most probable state” equilibrium statistical theory for random distributions of hetons in a closed basin is developed here in the context of two-layer quasigeostrophic models for the spreading phase of open-ocean convection. The theory depends only on bulk conserved quantities such as energy, circulation, and the range of values of potential vorticity in each layer. The simplest theory is formulated for a uniform cooling event over the entire basin that triggers a homogeneous random distribution of convective towers. For a small Rossby deformation radius typical for open-ocean convection sites, the most probable states that arise from this theory strongly resemble the saturated baroclinic states of the spreading phase of convection, with a stabilizing barotropic rim current and localized temperature anomaly.
Resumo:
Visual classification is the way we relate to different images in our environment as if they were the same, while relating differently to other collections of stimuli (e.g., human vs. animal faces). It is still not clear, however, how the brain forms such classes, especially when introduced with new or changing environments. To isolate a perception-based mechanism underlying class representation, we studied unsupervised classification of an incoming stream of simple images. Classification patterns were clearly affected by stimulus frequency distribution, although subjects were unaware of this distribution. There was a common bias to locate class centers near the most frequent stimuli and their boundaries near the least frequent stimuli. Responses were also faster for more frequent stimuli. Using a minimal, biologically based neural-network model, we demonstrate that a simple, self-organizing representation mechanism based on overlapping tuning curves and slow Hebbian learning suffices to ensure classification. Combined behavioral and theoretical results predict large tuning overlap, implicating posterior infero-temporal cortex as a possible site of classification.
Resumo:
Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.
Resumo:
Over four hundred years ago, Sir Walter Raleigh asked his mathematical assistant to find formulas for the number of cannonballs in regularly stacked piles. These investigations aroused the curiosity of the astronomer Johannes Kepler and led to a problem that has gone centuries without a solution: why is the familiar cannonball stack the most efficient arrangement possible? Here we discuss the solution that Hales found in 1998. Almost every part of the 282-page proof relies on long computer verifications. Random matrix theory was developed by physicists to describe the spectra of complex nuclei. In particular, the statistical fluctuations of the eigenvalues (“the energy levels”) follow certain universal laws based on symmetry types. We describe these and then discuss the remarkable appearance of these laws for zeros of the Riemann zeta function (which is the generating function for prime numbers and is the last special function from the last century that is not understood today.) Explaining this phenomenon is a central problem. These topics are distinct, so we present them separately with their own introductory remarks.
Resumo:
A molecular model of poorly understood hydrophobic effects is heuristically developed using the methods of information theory. Because primitive hydrophobic effects can be tied to the probability of observing a molecular-sized cavity in the solvent, the probability distribution of the number of solvent centers in a cavity volume is modeled on the basis of the two moments available from the density and radial distribution of oxygen atoms in liquid water. The modeled distribution then yields the probability that no solvent centers are found in the cavity volume. This model is shown to account quantitatively for the central hydrophobic phenomena of cavity formation and association of inert gas solutes. The connection of information theory to statistical thermodynamics provides a basis for clarification of hydrophobic effects. The simplicity and flexibility of the approach suggest that it should permit applications to conformational equilibria of nonpolar solutes and hydrophobic residues in biopolymers.
Resumo:
We present a general approach to forming structure-activity relationships (SARs). This approach is based on representing chemical structure by atoms and their bond connectivities in combination with the inductive logic programming (ILP) algorithm PROGOL. Existing SAR methods describe chemical structure by using attributes which are general properties of an object. It is not possible to map chemical structure directly to attribute-based descriptions, as such descriptions have no internal organization. A more natural and general way to describe chemical structure is to use a relational description, where the internal construction of the description maps that of the object described. Our atom and bond connectivities representation is a relational description. ILP algorithms can form SARs with relational descriptions. We have tested the relational approach by investigating the SARs of 230 aromatic and heteroaromatic nitro compounds. These compounds had been split previously into two subsets, 188 compounds that were amenable to regression and 42 that were not. For the 188 compounds, a SAR was found that was as accurate as the best statistical or neural network-generated SARs. The PROGOL SAR has the advantages that it did not need the use of any indicator variables handcrafted by an expert, and the generated rules were easily comprehensible. For the 42 compounds, PROGOL formed a SAR that was significantly (P < 0.025) more accurate than linear regression, quadratic regression, and back-propagation. This SAR is based on an automatically generated structural alert for mutagenicity.