993 resultados para Statistical Error


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a heuristic method for learning error correcting output codes matrices based on a hierarchical partition of the class space that maximizes a discriminative criterion. To achieve this goal, the optimal codeword separation is sacrificed in favor of a maximum class discrimination in the partitions. The creation of the hierarchical partition set is performed using a binary tree. As a result, a compact matrix with high discrimination power is obtained. Our method is validated using the UCI database and applied to a real problem, the classification of traffic sign images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We conduct a large-scale comparative study on linearly combining superparent-one-dependence estimators (SPODEs), a popular family of seminaive Bayesian classifiers. Altogether, 16 model selection and weighing schemes, 58 benchmark data sets, and various statistical tests are employed. This paper's main contributions are threefold. First, it formally presents each scheme's definition, rationale, and time complexity and hence can serve as a comprehensive reference for researchers interested in ensemble learning. Second, it offers bias-variance analysis for each scheme's classification error performance. Third, it identifies effective schemes that meet various needs in practice. This leads to accurate and fast classification algorithms which have an immediate and significant impact on real-world applications. Another important feature of our study is using a variety of statistical tests to evaluate multiple learning methods across multiple data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A common way to model multiclass classification problems is by means of Error-Correcting Output Codes (ECOCs). Given a multiclass problem, the ECOC technique designs a code word for each class, where each position of the code identifies the membership of the class for a given binary problem. A classification decision is obtained by assigning the label of the class with the closest code. One of the main requirements of the ECOC design is that the base classifier is capable of splitting each subgroup of classes from each binary problem. However, we cannot guarantee that a linear classifier model convex regions. Furthermore, nonlinear classifiers also fail to manage some type of surfaces. In this paper, we present a novel strategy to model multiclass classification problems using subclass information in the ECOC framework. Complex problems are solved by splitting the original set of classes into subclasses and embedding the binary problems in a problem-dependent ECOC design. Experimental results show that the proposed splitting procedure yields a better performance when the class overlap or the distribution of the training objects conceal the decision boundaries for the base classifier. The results are even more significant when one has a sufficiently large training size.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample.Results: Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace.Conclusion: Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A-1 - Monthly Public Assistance Statistical Report Family Investment Program