984 resultados para Stable Isotope Analysis


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present sea surface and upper thermocline temperature records (60-100 yr temporal resolution) spanning Marine Isotope Stage 3 (~24-62 kyr BP) from IMAGES Core MD01-2378 (121°47.27'E and 13°04.95'S; 1783 m water depth) located in the outflow area of the Indonesian Throughflow within the Timor Sea. Stable isotopes and Mg/Ca of the near surface dwelling planktonic foraminifer Globigerinoides ruber (white) and the upper thermocline dwelling Pulleniatina obliquiloculata reveal rapid changes in the thermal structure of the upper ocean during Heinrich Events. Thermocline warming and increased delta18Oseawater (P. obliquiloculata record) during Heinrich Events 3, 4, and 5 reflect weakening of the relatively cool and fresh thermocline flow and reduced export of less saline water from the North Pacific and Indonesian Seas to the tropical Indian Ocean. Three main factors influenced Indonesian Throughflow variability during Marine Isotope Stage 3: (1) global slow-down in thermohaline circulation during Heinrich Events triggered by northern hemisphere cooling; (2) increased freshwater export from the Java Sea into the Indonesian Throughflow controlled by rising sea level from ~60 to 47 ka and (3) insolation related changes in Australasian monsoon with associated migration of hydrological fronts between Indian Ocean and Indonesian Throughflow derived water masses at ~46-40 ka.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oxygen isotope values from calcareous nannofossils in four cores spanning the Quaternary from DSDP Site 593 in Tasman Sea are compared with the delta18O signal of planktonic and benthic foraminifers from the same samples. The classic mid-late Quaternary isotope stages are exhibited with stage 12 particularly well developed. When delta18O values of nannofossils are adjusted for coccolithophore vital effects they indicate larger (by 1-6°C) surface to bottom paleotemperature gradients and greater (by 1-3°C) changes in mean sea-surface temperature between full glacial and interglacial conditions than do delta18O values from planktonic foraminifers. Along with the foraminifers, the nannofossils record a bimodal distribution of delta18O between the early and mid-late Quaternary, indicating a significant change in global ice budget. The delta13C of nannofossils also shows a bimodal distribution, but is opposite to that for the foraminifers. Nannofossil delta18O values record a shift of c. -0.8? at isotope stage 8 corresponding to a major reduction in abundance of the previously dominant gephyrocapsids. A shift in delta13C of c. -1.5? also occurs at stage 8, and a shift in delta13C of c. +1.2? at around stage 14. The delta18O shift in nannofossils is at least a Pacific-wide phenomenon; the delta13C shifts are possibly global. The delta13C signal of nannofossils exhibits an antipathetic relationship to that of benthic foraminifers back to isotope stage 18 but no significant correlation beyond this level to the base of the Quaternary. This is interpreted as reflecting local productivity dominating global influences on delta13C since stage 18 at DSDP Site 593. The difference between nannofossil and benthic foraminifer delta13C signals (Delta13C) tends to be maximum during glacial stages and minimum during interglacials throughout the section, showing a strong correlation with the nannofossil delta180 signal. The increased partitioning of 13C between surface and bottom waters during the glacial periods may indicate heightened productivity in surface waters in the southern Tasman Sea at these times.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stable-isotope stratigraphy at Site 846 (tropical Pacific, 3°06'S, 90°49'W, 3307 m water depth), based on the benthic foraminifers Cibicides wuellerstorfi and Uvigerina peregrina, yields a high-resolution record of deep-sea delta18O and delta13C over the past 1.8 Ma, with an average sampling interval of 3 k.y. Variance in the delta18O and delta13C records is concentrated in the well-known orbital periods of 100, 41, and 23 k.y. In the 100-k.y. band, both isotopic signals grow from relatively low amplitudes prior to 1.2 Ma, to high amplitudes in the late Quaternary since 0.7 Ma. The amplitude of delta18O and especially of delta13C decreases in the 41-k.y. band as it grows in the 100-k.y. band, consistent with a transfer of energy into an orbitally-paced internal oscillation. A weak 30-k.y. rhythm, present in both delta18O and delta13C, may reflect nonlinear interaction between the 41-k.y. and 100-k.y. bands in the evolving climate system. In the 23-k.y. and 19-k.y. bands associated with orbital precession, delta18O and delta13C are not coherent with each other on long time scales, and do not evolve like the 100-k.y. and 41-k.y. bands. This suggests that the source of the growing 100-k.y. oscillation is not a nonlinear response to precession, in contrast to predictions of some climate models. Sedimentation rates at this site also vary with a strong 100-k.y. cycle. Unlike the isotope records, the amplitude of 100-k.y. variations in sedimentation rate is relatively constant over the past 1.8 Ma, ranging from about 15 to 70 m/m.y. Prior to 0.9 Ma, sedimentation rates co-vary with orbital eccentricity, rather than with global climate as reflected by delta18O or delta13C. A source of this 100-k.y. cycle of sedimentation rate in the absence of similar ice volume fluctuations may be precessional heating of equatorial land masses, which in an energy balance climate model drives variations of monsoonal climates with a 100-k.y. rhythm. For the interval younger than 0.9 Ma, high sedimentation rates in the 100-k.y. band are consistently associated with glacial stages. This change of pattern suggests that when the amplitude of glacial cycles become large enough, their global effects overpower a local monsoon-driven variation in sedimentation rate at Site 846.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed faunal, isotopic, and lithic marine records provide new insight into the stability and climate progression of the last interglacial period, Marine Isotope Stage (MIS) 5, which peaked approximately 125,000 years ago. In the eastern subpolar North Atlantic, at the latitude of Ireland, interglacial warmth of the ice volume minimum of substage 5e (MIS 5e) lasted ~10,000 years (10 ka) and its demise occurred in two cooling steps. The first cooling step marked the end of the climatic optimum, which was 2-3 ka long. Minor ice rafting accompanied each cooling step; the second, larger, step encompassing cold events C26 and C25 was previously identified in the northwestern Atlantic. Approximately 4 °C of cooling occurred between peak interglacial warmth and C25, and the region experienced an additional temporary cooling of at least 1-2 °C during C24, a cooling event associated with widespread ice rafting in the North Atlantic. Beginning with C24, MIS 5 was characterized by oscillations of at least 1-2 °C superimposed on a generally cool baseline. The results of this study imply that the marine climatic optimum of the last interglacial was shorter than previously thought. The finding that the eastern subpolar North Atlantic cooled significantly before C24 reconciles terrestrial evidence for progressive climate deterioration at similar and lower latitudes with marine conditions. Our results also demonstrate a close association between modest ice rafting, cooling, and deep ocean circulation even during the peak of MIS 5e and in the earliest stages of ice growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A long-standing question in Paleogene climate concerns the frequency and mechanism of transient greenhouse gas-driven climate shifts (hyperthermals). The discovery of the greenhouse gas-driven Paleocene-Eocene Thermal Maximum (PETM; ~55 Ma) has spawned a search for analogous events in other parts of the Paleogene record. On the basis of high-resolution bulk sediment and foraminiferal stable isotope analyses performed on three lower Danian sections of the Atlantic Ocean, we report the discovery of a possible greenhouse gas-driven climatic event in the earliest Paleogene. This event - that we term the Dan-C2 event - is characterized by a conspicuous double negative excursion in delta13C and delta18O, associated with a double spike in increased clay content and decreased carbonate content. This suggests a double period of transient greenhouse gas-driven warming and dissolution of carbonates on the seafloor analogous to the PETMin the early Paleocene at ~65.2 Ma. However, the shape of the two negative carbon isotope excursions that make up the Dan-C2 event is different from the PETM carbon isotope profile. In the Dan-C2 event, these excursions are fairly symmetrical and each persisted for about ~40 ky and are separated by a short plateau that brings the combined duration to ~100 ky, suggesting a possible orbital control on the event. Because of the absence of a long recovery phase, we interpret the Dan-C2 event to have been associated with a redistribution of carbon that was already in the biosphere. The Dan-C2 event and other early Paleogene hyperthermals such as the short-lived early Eocene ELMO eventmay reflect amplification of a regular cycle in the size and productivity of the marine biosphere and the balance between burial of organic and carbonate carbon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the middle Miocene, Earth's climate transitioned from a relatively warm phase (Miocene climatic optimum) into a colder mode with re-establishment of permanent ice sheets on Antarctica, thus marking a fundamental step in Cenozoic cooling. Carbon sequestration and atmospheric CO2 drawdown through increased terrestrial and/or marine productivity have been proposed as the main drivers of this fundamental transition. We integrate high-resolution (1-3 k.y.) benthic stable isotope data with XRF-scanner derived biogenic silica and carbonate accumulation estimates in an exceptionally well-preserved sedimentary archive, recovered at Integrated Ocean Drilling Program Site U1338, to reconstruct eastern equatorial Pacific productivity variations and to investigate temporal linkages between high- and low-latitude climate change over the interval 16-13 Ma. Our records show that the climatic optimum (16.8-14.7 Ma) was characterized by high amplitude climate variations, marked by intense perturbations of the carbon cycle. Episodes of peak warmth at (southern hemisphere) insolation maxima coincided with transient shoaling of the carbonate compensation depth and enhanced carbonate dissolution in the deep ocean. A switch to obliquity-paced climate variability after 14.7 Ma concurred with a general improvement in carbonate preservation and the onset of stepwise global cooling, culminating with extensive ice growth over Antarctica at ~13.8 Ma. We find that two massive increases in opal accumulation at ~14.0 and ~13.8 Ma occurred just before and during the final and most prominent cooling step, supporting the hypothesis that enhanced siliceous productivity in the eastern equatorial Pacific contributed to CO2 drawdown.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The South Chamorro Seamount is a serpentinite mud volcano near the southern end of the Mariana forearc. The mud volcano was sampled by drilling during Ocean Drilling Program Leg 195. Samples of pore water squeezed from serpentinite mud were analyzed for stable isotope compositions of carbon in dissolved inorganic carbon and methane, sulfur in sulfate and sulfide, and oxygen in sulfate.

Relevância:

100.00% 100.00%

Publicador: