986 resultados para Spray chamber
Resumo:
The `biomimetic` approach to tissue engineering usually involves the use of a bioreactor mimicking physiological parameters whilst supplying nutrients to the developing tissue. Here we present a new heart valve bioreactor, having as its centrepiece a ventricular assist device (VAD), which exposes the cell-scaffold constructs to a wider array of mechanical forces. The pump of the VAD has two chambers: a blood and a pneumatic chamber, separated by an elastic membrane. Pulsatile air-pressure is generated by a piston-type actuator and delivered to the pneumatic chamber, ejecting the fluid in the blood chamber. Subsequently, applied vacuum to the pneumatic chamber causes the blood chamber to fill. A mechanical heart valve was placed in the VAD`s inflow position. The tissue engineered (TE) valve was placed in the outflow position. The VAD was coupled in series with a Windkessel compliance chamber, variable throttle and reservoir, connected by silicone tubings. The reservoir sat on an elevated platform, allowing adjustment of ventricular preload between 0 and 11 mmHg. To allow for sterile gaseous exchange between the circuit interior and exterior, a 0.2 mu m filter was placed at the reservoir. Pressure and flow were registered downstream of the TE valve. The circuit was filled with culture medium and fitted in a standard 5% CO(2) incubator set at 37 degrees C. Pressure and flow waveforms were similar to those obtained under physiological conditions for the pulmonary circulation. The `cardiomimetic` approach presented here represents a new perspective to conventional biomimetic approaches in TE, with potential advantages. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This study evaluates the possibility of replacing the hexavalent chromium passivation treatment used as a sealer after phosphating of carbon steel (SAE 1010) by a treatment with niobium ammonium oxalate (Ox). Samples of carbon steel (SAE 1010) after being phosphated in a zinc phosphate bath (PZn + Ni) were immersed in solution of niobium ammonium oxalate (250 mg L(-1) of Nb) either at pH 3.0 or pH 8.0. A passivation treatment with a solution with CrO(3) (200 mg L(-1) of Cr(6+)) was also used for reference. The corrosion resistance of the phosphated samples after passivation treatments was analyzed in a NaCl 0.5 mol L(-1) solution using electrochemical impedance spectroscopy (EIS) and anodic polarization curves. Salt spray tests were also performed to evaluate their corrosion resistance. The results showed that the highest corrosion resistance was obtained by passivation in a solution with (250 mg L(-1) of Nb) at pH 8.0. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this work is the production and preliminary characterization of adsorbent new materials useful for sensor development. A new plasma chamber was simulated and designed in order to obtain multiple layers and/or composites in a single step. Plasma deposited organic fluorocompound and hexamethyldisilazane (HMDS) thin films were produced and tested as adsorbent layers. Chemical characterization used ellipsometry, Raman. infrared and X-ray photoelectron spectroscopy. Hydrophobic and oleophobic character were determined by contact angle measurements. Adsorption characteristics were evaluated using quartz crystal microbalance. Not only HMDS but also the fluorocompound can polymerize but intermixing and a double layer are only obtained in very narrow conditions. The films are adsorbent and mildly hydrophobic. Films deposited on a microchromatographic column can be used on sample pretreatment to remove and/or preconcentrate volatile organic Compounds. Therefore, with this approach it is possible to obtain films with different monomers on double layer or composites, with organic/inorganic materials or particles and use them on sample pretreatment for chemical analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The propolis has potential to be a natural food additive However its application is limited because It is alcohol-soluble and has strong flavour Microencapsulation may be an alternative for reducing these problems The aim of this study was to encapsulate propolis extract by complex coacervation using isolated soy protein and pectin as encapsulant agents The coacervation was studied as a function of pH (5 0 4 5 4 0 and 3 5) and the concentration of encapsulants and core (2 5 and 5 0 g/100 mL) Samples obtained at pH 4 0 in both concentrations were lyophilized and analyzed for hygroscopicity encapsulation efficiency particle size morphology thermal behavior stability of phenolic and flavonoids during storage as well as antioxidant and antimicrobial activities It was possible to encapsulate propolis extract by complex coacervation and to obtain it in the form of powder alcohol-free stable with antioxidant property antimicrobial activity against Staphylococcus aureus and with the possibility of controlled release in foods (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Wood-water relationship of untreated and heat-treated wood was studied. Specimens of Eucalyptus grandis, E saligna, and E citriodora were submitted to five conditions of heat treatment: 180 degrees C and 220 degrees C with air; 220 degrees C, 250 degrees C, and 280 degrees C with N(2). The wood-water relationships were accurately studied in a special device, in which the moisture content (MC) of the sample was measured with a highly sensitive electronic microbalance placed in a climatic chamber. The dimensions of the sample were collected continuously without contact by means of two high-speed laser scan micrometers. Sorption curves and shrinkage-MC relationships were observed. To study the effects of heat treatment, the following parameters were also determined: fiber saturation point (FPS), wood anisotropy (T/R ratio), shrinkage slope, reduction in hygroscopicity, and anti-shrink efficiency (ASE). The physical properties were significantly affected only at 220 degrees C and above. At heat temperature levels higher than 220 degrees C, the reduction in hygroscopicity and ASE are higher than 40% and continue to be reduced with increasing temperature level. This work also demonstrates that heat treatment does not change the slope of the curves shrinkage vs. MC, proving that heat treatment affects the domain of alterations in wood properties, but not the behavior within this domain.
Resumo:
The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.
Resumo:
Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L(-1)) or high (0.16 mol L(-1)) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (similar to 180 mg kg(-1)) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naive seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a `basal` species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 degrees C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 degrees C and 40 % relative air humidity). All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 degrees C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naive avian frugivores.
Resumo:
BACKGROUND: Glyphosate is used to control weeds in citrus orchards, and accidental spraying or wind drift onto the seedlings may cause growth arrest owing to metabolism disturbance. Two experiments were carried out to investigate the effect of non-lethal rates (0, 180, 360 and 720 g Al ha(-1)) of glyphosate on four-month-old `Cravo` lime, Citrus limonia (L.) Osbeck, seedlings. Photosynthesis and the concentrations of shikimic acid, total free amino acids and phenolic acids were evaluated. RESULTS: Only transitory effects were observed in the! contents of shikimate and total free amino acids. No visual effects were observed. CONCLUSION: The present study showed that glyphosate at non-lethal rates, which is very usual when accidental spraying or wind drift occurs in citrus orchard, did not cause severe metabolic damage in `Cravo` lime seedlings. (C) 2009 Society of Chemical Industry
Resumo:
Literature has documented beneficial effects of seed priming on speed, synchronization and uniformity of germination. often leading to improved stand establishment. However. doubts still persist about the possible reversal effects, after drying and during storage of primed seeds that could overcome, partial or totally, the improved performance. The objectives of this research were to identify drying and storage procedures that would maintain the physiological performance achieved after seed priming, without negative effects on storability. First. hydroprimed cauliflower Seeds cv. Sharon and cv. Teresopolis Gigante, each represented by three seed lots were submitted to fast drying, slow drying, and treatments of pre-drying incubation (exposure to 35 degrees C, to a polyethylene glycol 6000 solution or a heat shock) followed by fast drying. In the second phase of this study, hydroprimed seed samples were submitted to fast drying (30-35 degrees C and 40-50% R.H.) and stored under laboratory conditions or in a chamber at 20 degrees C and 50% relative humidity for six months. Seed physiological potential was evaluated after 60-day intervals for germination (speed and percentage), Seedling emergence and saturated salt accelerated aging tests. All drying treatments efficiently preserved the favourable priming effects, except for the incubation at 35 degrees C for 96-144 hours. The beneficial priming effects followed by fast drying persisted for four months under controlled conditions (20 degrees C and 50% relative humidity).
Resumo:
Sourgrass is a perennial weed infesting annual and perennial crops in Brazil. Three biotypes (R1, R2, and R3) of sourgrass suspected to be glyphosate-resistant (R) and another one (S) from a natural area without glyphosate application, in Brazil, were tested for resistance to glyphosate based on screening, dose-response, and shikimic acid assays. Both screening and dose-response assays confirmed glyphosate resistance in the three sourgrass biotypes. Dose-response assay indicated a resistance factor of 2.3 for biotype RI and 3.9 for biotypes R2 and R3. The hypothesis of a glyphosate resistance was corroborated on the basis of shikimic acid accumulation, where the S biotype accumulated 3.3, 5.0, and 5.7 times more shikimic acid than biotypes R1, R2, and R3, respectively, 168 h after treatment with 157.50 g ae ha(-1) of glyphosate. There were no differences in contact angle of spray droplets on leaves and spray retention, indicating that differential capture of herbicide by leaves was not responsible for resistance in these biotypes. The results confirmed resistance of sourgrass to glyphosate in Brazil.
Resumo:
The functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions is an important tool for uses as diverse as assessment of the stress-related sensitivity of different plant cultivars and characterization of soil structure. Two of the most pervasive sources of stress are soil resistance to root penetration (SR) and matric potential (psi). However, the assessment of these sources of stress on physiological processes in different soils can be complicated by other sources of stress and by the strong relation between SR and psi in a soil. A multivariate boundary line approach was assessed as a means of reducing these cornplications. The effects of SR and psi stress conditions on plant responses were examined under growth chamber conditions. Maize plants (Zea mays L.) were grown in soils at different water contents and having different structures arising from variation in texture, organic carbon content and soil compaction. Measurements of carbon exchange (CE), leaf transpiration (ILT), plant transpiration (PT), leaf area (LA), leaf + shoot dry weight (LSDW), root total length (RTL), root surface area (RSA) and root dry weight (RDW) were determined after plants reached the 12-leaf stage. The LT, PT and LA were described as a function of SR and psi with a double S-shaped function using the multivariate boundary line approach. The CE and LSDW were described by the combination of an S-shaped function for SR and a linear function for psi. The root parameters were described by a single S-shaped function for SR. The sensitivity to SR and psi depended on the plant parameter. Values of PT, LA and LSDW were most sensitive to SR. Among those parameters exhibiting a significant response to psi, PT was most sensitive. The boundary line approach was found to be a useful tool to describe the functional relation between the decline in the rate of a physiological process and the magnitude of a stress related to soil physical conditions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
This study compared different temperatures and dormancy-reversion procedures for preservation of Phakopsora pachyrhizi uredospores. The storage temperatures tested were room temperature, 5 degrees C, -20 degrees C and -80 degrees C. Dehydrated and non-dehydrated uredospores were used, and evaluations for germination (%) and infectivity (no. of lesions/cm(2)) were made with fresh harvested spores and after 15, 29 76, 154 and 231 days of storage. The dormancy-reversion procedures evaluated were thermal shock (40 degrees C/5 min) followed or not by hydration (moist chamber,24 h). Uredospores stored at room temperature were viable only up to a month of storage, regardless of their hydration condition. Survival of uredospores increased with storage at lower temperatures. Dehydration of uredospores prior to storage increased their viability, mainly for uredospores stored at 5 degrees C, -20 degrees C and -80 degrees C. At 5 degrees C and -20 degrees C, dehydrated uredospores showed increases in viability of at least 47 and 127 days, respectively, compared to non-dehydrated spores. Uredospore germination and infectivity after storage for 231 days (7.7 months), could only be observed at -80 degrees C, for both hydration conditions. At this storage temperature, dehydrated and non-dehydrated uredospores exhibited 56 and 28% of germination at the end of the experiment, respectively. Storage at -80 degrees C also maintained uredospore infectivity, based upon levels of Infection frequency, for both hydration conditions. Among the dormancy-reversion treatments applied to spores stored at -80 degrees C, those involving hydration allowed recoveries of 85 to 92% of the initial germination.