926 resultados para Signal Processing, EMD, Thresholding, Acceleration, Displacement, Structural Identification
Resumo:
This paper presents an efficient low-complexity clipping noise compensation scheme for PAR reduced orthogonal frequency division multiple access (OFDMA) systems. Conventional clipping noise compensation schemes proposed for OFDM systems are decision directed schemes which use demodulated data symbols. Thus these schemes fail to deliver expected performance in OFDMA systems where multiple users share a single OFDM symbol and a specific user may only know his/her own modulation scheme. The proposed clipping noise estimation and compensation scheme does not require the knowledge of the demodulated symbols of the other users, making it very promising for OFDMA systems. It uses the equalized output and the reserved tones to reconstruct the signal by compensating the clipping noise. Simulation results show that the proposed scheme can significantly improve the system performance.
Resumo:
Speech recognition in car environments has been identified as a valuable means for reducing driver distraction when operating non-critical in-car systems. Likelihood-maximising (LIMA) frameworks optimise speech enhancement algorithms based on recognised state sequences rather than traditional signal-level criteria such as maximising signal-to-noise ratio. Previously presented LIMA frameworks require calibration utterances to generate optimised enhancement parameters which are used for all subsequent utterances. Sub-optimal recognition performance occurs in noise conditions which are significantly different from that present during the calibration session - a serious problem in rapidly changing noise environments. We propose a dialog-based design which allows regular optimisation iterations in order to track the changing noise conditions. Experiments using Mel-filterbank spectral subtraction are performed to determine the optimisation requirements for vehicular environments and show that minimal optimisation assists real-time operation with improved speech recognition accuracy. It is also shown that the proposed design is able to provide improved recognition performance over frameworks incorporating a calibration session.
Resumo:
Searching for humans lost in vast stretches of ocean has always been a difficult task. This paper investigates a machine vision system that addresses this problem by exploiting the useful properties of alternate colour spaces. In particular, the paper investigates the fusion of colour information from the HSV, RGB, YCbCr and YIQ colour spaces within the emission matrix of a Hidden Markov Model tracker to enhance video based maritime target detection. The system has shown promising results. The paper also identifies challenges still needing to be met.
Resumo:
This paper proposes a novel relative entropy rate (RER) based approach for multiple HMM (MHMM) approximation of a class of discrete-time uncertain processes. Under different uncertainty assumptions, the model design problem is posed either as a min-max optimisation problem or stochastic minimisation problem on the RER between joint laws describing the state and output processes (rather than the more usual RER between output processes). A suitable filter is proposed for which performance results are established which bound conditional mean estimation performance and show that estimation performance improves as the RER is reduced. These filter consistency and convergence bounds are the first results characterising multiple HMM approximation performance and suggest that joint RER concepts provide a useful model selection criteria. The proposed model design process and MHMM filter are demonstrated on an important image processing dim-target detection problem.
Resumo:
This work aims to take advantage of recent developments in joint factor analysis (JFA) in the context of a phonetically conditioned GMM speaker verification system. Previous work has shown performance advantages through phonetic conditioning, but this has not been shown to date with the JFA framework. Our focus is particularly on strategies for combining the phone-conditioned systems. We show that the classic fusion of the scores is suboptimal when using multiple GMM systems. We investigate several combination strategies in the model space, and demonstrate improvement over score-level combination as well as over a non-phonetic baseline system. This work was conducted during the 2008 CLSP Workshop at Johns Hopkins University.
Resumo:
In public venues, crowd size is a key indicator of crowd safety and stability. Crowding levels can be detected using holistic image features, however this requires a large amount of training data to capture the wide variations in crowd distribution. If a crowd counting algorithm is to be deployed across a large number of cameras, such a large and burdensome training requirement is far from ideal. In this paper we propose an approach that uses local features to count the number of people in each foreground blob segment, so that the total crowd estimate is the sum of the group sizes. This results in an approach that is scalable to crowd volumes not seen in the training data, and can be trained on a very small data set. As a local approach is used, the proposed algorithm can easily be used to estimate crowd density throughout different regions of the scene and be used in a multi-camera environment. A unique localised approach to ground truth annotation reduces the required training data is also presented, as a localised approach to crowd counting has different training requirements to a holistic one. Testing on a large pedestrian database compares the proposed technique to existing holistic techniques and demonstrates improved accuracy, and superior performance when test conditions are unseen in the training set, or a minimal training set is used.
Resumo:
In this paper, cognitive load analysis via acoustic- and CAN-Bus-based driver performance metrics is employed to assess two different commercial speech dialog systems (SDS) during in-vehicle use. Several metrics are proposed to measure increases in stress, distraction and cognitive load and we compare these measures with statistical analysis of the speech recognition component of each SDS. It is found that care must be taken when designing an SDS as it may increase cognitive load which can be observed through increased speech response delay (SRD), changes in speech production due to negative emotion towards the SDS, and decreased driving performance on lateral control tasks. From this study, guidelines are presented for designing systems which are to be used in vehicular environments.
Resumo:
We propose an efficient and low-complexity scheme for estimating and compensating clipping noise in OFDMA systems. Conventional clipping noise estimation schemes, which need all demodulated data symbols, may become infeasible in OFDMA systems where a specific user may only know his own modulation scheme. The proposed scheme first uses equalized output to identify a limited number of candidate clips, and then exploits the information on known subcarriers to reconstruct clipped signal. Simulation results show that the proposed scheme can significantly improve the system performance.
Resumo:
This work presents an extended Joint Factor Analysis model including explicit modelling of unwanted within-session variability. The goals of the proposed extended JFA model are to improve verification performance with short utterances by compensating for the effects of limited or imbalanced phonetic coverage, and to produce a flexible JFA model that is effective over a wide range of utterance lengths without adjusting model parameters such as retraining session subspaces. Experimental results on the 2006 NIST SRE corpus demonstrate the flexibility of the proposed model by providing competitive results over a wide range of utterance lengths without retraining and also yielding modest improvements in a number of conditions over current state-of-the-art.
Resumo:
While spoken term detection (STD) systems based on word indices provide good accuracy, there are several practical applications where it is infeasible or too costly to employ an LVCSR engine. An STD system is presented, which is designed to incorporate a fast phonetic decoding front-end and be robust to decoding errors whilst still allowing for rapid search speeds. This goal is achieved through mono-phone open-loop decoding coupled with fast hierarchical phone lattice search. Results demonstrate that an STD system that is designed with the constraint of a fast and simple phonetic decoding front-end requires a compromise to be made between search speed and search accuracy.
Resumo:
The use of the PC and Internet for placing telephone calls will present new opportunities to capture vast amounts of un-transcribed speech for a particular speaker. This paper investigates how to best exploit this data for speaker-dependent speech recognition. Supervised and unsupervised experiments in acoustic model and language model adaptation are presented. Using one hour of automatically transcribed speech per speaker with a word error rate of 36.0%, unsupervised adaptation resulted in an absolute gain of 6.3%, equivalent to 70% of the gain from the supervised case, with additional adaptation data likely to yield further improvements. LM adaptation experiments suggested that although there seems to be a small degree of speaker idiolect, adaptation to the speaker alone, without considering the topic of the conversation, is in itself unlikely to improve transcription accuracy.
Resumo:
A method of improving the security of biometric templates which satisfies desirable properties such as (a) irreversibility of the template, (b) revocability and assignment of a new template to the same biometric input, (c) matching in the secure transformed domain is presented. It makes use of an iterative procedure based on the bispectrum that serves as an irreversible transformation for biometric features because signal phase is discarded each iteration. Unlike the usual hash function, this transformation preserves closeness in the transformed domain for similar biometric inputs. A number of such templates can be generated from the same input. These properties are illustrated using synthetic data and applied to images from the FRGC 3D database with Gabor features. Verification can be successfully performed using these secure templates with an EER of 5.85%