936 resultados para Short range order correlations
Resumo:
Originally, the Chlamydiales order was represented by a single family, the Chlamydiaceae, composed of several pathogens, such as Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia abortus. Recently, 6 new families of Chlamydia-related bacteria have been added to the Chlamydiales order. Most of these obligate intracellular bacteria are able to replicate in free-living amoebae. Amoebal co-culture may be used to selectively isolate amoeba-resisting bacteria. This method allowed in a previous work to discover strain CRIB 30, from an environmental water sample. Based on its 16S rRNA gene sequence similarity with Criblamydia sequanensis, strain CRIB 30 was considered as a new member of the Criblamydiaceae family. In the present work, phylogenetic analyses of the genes gyrA, gyrB, rpoA, rpoB, secY, topA and 23S rRNA as well as MALDI-TOF MS confirmed the taxonomic classification of strain CRIB 30. Morphological examination revealed peculiar star-shaped elementary bodies (EBs) similar to those of C. sequanensis. Therefore, this new strain was called "Estrella lausannensis". Finally, E. lausannensis showed a large amoebal host range and a very efficient replication rate in Acanthamoeba species. Furthermore, E. lausannensis is the first member of the Chlamydiales order to grow successfully in the genetically tractable Dictyostelium discoideum, which opens new perspectives in the study of chlamydial biology.
The psychosocial difficulties in brain disorders that explain short term changes in health outcomes.
Resumo:
BACKGROUND: This study identifies a set of psychosocial difficulties that are associated with short term changes in health outcomes across a heterogeneous set of brain disorders, neurological and psychiatric. METHODS: Longitudinal observational study over approximately 12 weeks with three time points of assessment and 741 patients with depression, bipolar disorders, multiple sclerosis, parkinson's disease, migraine, traumatic brain injury and stroke. The data on disability was collected with the checklist of the International Classification of Functioning, Disability and Health. The selected health outcomes were the Short Form 36 and the World Health Organization Disability Assessment Schedule. Multilevel models for change were applied controlling for age, gender and disease severity. RESULTS: The psychosocial difficulties that explain the variability and change over time of the selected health outcomes were energy and drive, sleep, and emotional functions, and a broad range of activities and participation domains, such as solving problems, conversation, areas of mobility and self-care, relationships, community life and recreation and leisure. CONCLUSIONS: Our findings are of interest to researchers and clinicians for interventions and health systems planning as they show that in addition to difficulties that are diagnostic criteria of these disorders, there are other difficulties that explain small changes in health outcomes over short periods of time.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
There is an increasing utilisation of oral creatine (Cr) supplementation among athletes who hope to enhance their performance but it is not known if this ingestion has any detrimental effect on the kidney. Five healthy men ingested either a placebo or 20 g of creatine monohydrate per day for 5 consecutive days. Blood samples and urine collections were analysed for Cr and creatinine (Crn) determination after each experimental session. Total protein and albumin urine excretion rates were also determined. Oral Cr supplementation had a significant incremental impact on arterial content (3.7 fold) and urine excretion rate (90 fold) of this compound. In contrast, arterial and urine Crn values were not affected by the Cr ingestion. The glomerular filtration rate (Crn clearance) and the total protein and albumin excretion rates remained within the normal range. In conclusion, this investigation showed that short-term oral Cr supplementation does not appear to have any detrimental effect on the renal responses of healthy men.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
Both neural and behavioral responses to stimuli are influenced by the state of the brain immediately preceding their presentation, notably by pre-stimulus oscillatory activity. Using frequency analysis of high-density electroencephalogram coupled with source estimations, the present study investigated the role of pre-stimulus oscillatory activity in auditory spatial temporal order judgments (TOJ). Oscillations within the beta range (i.e. 18-23Hz) were significantly stronger before accurate than inaccurate TOJ trials. Distributed source estimations identified bilateral posterior sylvian regions as the principal contributors to pre-stimulus beta oscillations. Activity within the left posterior sylvian region was significantly stronger before accurate than inaccurate TOJ trials. We discuss our results in terms of a modulation of sensory gating mechanisms mediated by beta activity.
Resumo:
Aim We examined whether species occurrences are primarily limited by physiological tolerance in the abiotically more stressful end of climatic gradients (the asymmetric abiotic stress limitation (AASL) hypothesis) and the geographical predictions of this hypothesis: abiotic stress mainly determines upper-latitudinal and upper-altitudinal species range limits, and the importance of abiotic stress for these range limits increases the further northwards and upwards a species occurs. Location Europe and the Swiss Alps. Methods The AASL hypothesis predicts that species have skewed responses to climatic gradients, with a steep decline towards the more stressful conditions. Based on presence-absence data we examined the shape of plant species responses (measured as probability of occurrence) along three climatic gradients across latitudes in Europe (1577 species) and altitudes in the Swiss Alps (284 species) using Huisman-Olff-Fresco, generalized linear and generalized additive models. Results We found that almost half of the species from Europe and one-third from the Swiss Alps showed responses consistent with the predictions of the AASL hypothesis. Cold temperatures and a short growing season seemed to determine the upper-latitudinal and upper-altitudinal range limits of up to one-third of the species, while drought provided an important constraint at lower-latitudinal range limits for up to one-fifth of the species. We found a biome-dependent influence of abiotic stress and no clear support for abiotic stress as a stronger upper range-limit determinant for species with higher latitudinal and altitudinal distributions. However, the overall influence of climate as a range-limit determinant increased with latitude. Main conclusions Our results support the AASL hypothesis for almost half of the studied species, and suggest that temperature-related stress controls the upper-latitudinal and upper-altitudinal range limits of a large proportion of these species, while other factors including drought stress may be important at the lower range limits.
Resumo:
The silicon photomultiplier (SiPM) is a novel detector technology that has undergone a fast development in the last few years, owing to its single-photon resolution and ultra-fast response time. However, the typical high dark count rates of the sensor may prevent the detection of low intensity radiation fluxes. In this article, the time-gated operation with short active periods in the nanosecond range is proposed as a solution to reduce the number of cells fired due to noise and thus increase the dynamic range. The technique is aimed at application fields that function under a trigger command, such as gated fluorescence lifetime imaging microscopy.
Resumo:
Late Variscan volcanic activity is documented in the Late Carboniferous Salvan-Dorenaz sedimentary basin and in the neighboring basement units of the Aiguilles-Rouges and Mont-Blanc crystalline massifs (Western Alps). Precise U/Pb isotopic dating, zircon morphology and geochemical analyses indicate that volcanism occurred during short-lived pulses and that coexisting crustal and mantle sources were involved in the production of melts. Volcanic and subvolcanic products were emplaced along major N-S to NNE-SSW transtensional fracture zones, similar to the ones that governed intense basement exhumation and that favored the formation and filling of the Late Carboniferous Salvan-Dorenaz continental basin. In the Aiguilles-Rouges massif, dacitic flows outcropping at the base of the Salvan-Dorenaz basin erupted at 308 +/- 3 Ma; they represent the surface equivalent of the nearby Vallorcine peraluminous granite and associated rhyolitic dykes (311 +/- 17 Ma). In the Mont Blanc massif, calc-alkaline rhyolitic dykes were emplaced simultaneously (307 +/- 2 Ma) at shallow crustal levels, but they derive from deeper magma sources denoting enhanced mantellic activity. Recently identified tuffs and volcaniclastic layers embedded at different levels of the Salvan-Dorenaz stratigraphic record testify a 295 +3/-4 Ma old episode of highly explosive volcanism from distant volcanic centers, possibly located in the Aar-Gotthard massifs (Central Alps). Their zircon typology is highly heterogeneous. documenting wall-rock contamination of the melts and/or admixture of crustal sediments, whereas consistent subpopulations point to high-temperature magmas of deep-seated origin and alkaline affinity. The dated volcanic layers from the Salvan-Dorenaz basin set the beginning of the detrital sedimentation at 308 +/- 3 Ma and constrain the deposition of 1.5-1.7 km thick of elastic sediments within a time span of 10-15 Ma. These results infer minimum, long-term subsidence rates during basin evolution in the order of >0.1 mm/a, while in the surrounding basement units estimated exhumation rates are in the range of 1 mm/a. All dated rocks contain inherited zircon populations about 350, 450 or 600 Ma old.
Resumo:
This work investigates novel alternative means of interaction in a virtual environment (VE).We analyze whether humans can remap established body functions to learn to interact with digital information in an environment that is cross-sensory by nature and uses vocal utterances in order to influence (abstract) virtual objects. We thus establish a correlation among learning, control of the interface, and the perceived sense of presence in the VE. The application enables intuitive interaction by mapping actions (the prosodic aspects of the human voice) to a certain response (i.e., visualization). A series of single-user and multiuser studies shows that users can gain control of the intuitive interface and learn to adapt to new and previously unseen tasks in VEs. Despite the abstract nature of the presented environment, presence scores were generally very high.
Resumo:
The application of forced unsteady-state reactors in case of selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3) is sustained by the fact that favorable temperature and composition distributions which cannot be achieved in any steady-state regime can be obtained by means of unsteady-state operations. In a normal way of operation the low exothermicity of the selective catalytic reduction (SCR) reaction (usually carried out in the range of 280-350°C) is not enough to maintain by itself the chemical reaction. A normal mode of operation usually requires supply of supplementary heat increasing in this way the overall process operation cost. Through forced unsteady-state operation, the main advantage that can be obtained when exothermic reactions take place is the possibility of trapping, beside the ammonia, the moving heat wave inside the catalytic bed. The unsteady state-operation enables the exploitation of the thermal storage capacity of the catalyticbed. The catalytic bed acts as a regenerative heat exchanger allowing auto-thermal behaviour when the adiabatic temperature rise is low. Finding the optimum reactor configuration, employing the most suitable operation model and identifying the reactor behavior are highly important steps in order to configure a proper device for industrial applications. The Reverse Flow Reactor (RFR) - a forced unsteady state reactor - corresponds to the above mentioned characteristics and may be employed as an efficient device for the treatment of dilute pollutant mixtures. As a main disadvantage, beside its advantages, the RFR presents the 'wash out' phenomena. This phenomenon represents emissions of unconverted reactants at every switch of the flow direction. As a consequence our attention was focused on finding an alternative reactor configuration for RFR which is not affected by the incontrollable emissions of unconverted reactants. In this respect the Reactor Network (RN) was investigated. Its configuration consists of several reactors connected in a closed sequence, simulating a moving bed by changing the reactants feeding position. In the RN the flow direction is maintained in the same way ensuring uniformcatalyst exploitation and in the same time the 'wash out' phenomena is annulated. The simulated moving bed (SMB) can operate in transient mode giving practically constant exit concentration and high conversion levels. The main advantage of the reactor network operation is emphasizedby the possibility to obtain auto-thermal behavior with nearly uniformcatalyst utilization. However, the reactor network presents only a small range of switching times which allow to reach and to maintain an ignited state. Even so a proper study of the complex behavior of the RN may give the necessary information to overcome all the difficulties that can appear in the RN operation. The unsteady-state reactors complexity arises from the fact that these reactor types are characterized by short contact times and complex interaction between heat and mass transportphenomena. Such complex interactions can give rise to a remarkable complex dynamic behavior characterized by a set of spatial-temporal patterns, chaotic changes in concentration and traveling waves of heat or chemical reactivity. The main efforts of the current research studies concern the improvement of contact modalities between reactants, the possibility of thermal wave storage inside the reactor and the improvement of the kinetic activity of the catalyst used. Paying attention to the above mentioned aspects is important when higher activity even at low feeding temperatures and low emissions of unconverted reactants are the main operation concerns. Also, the prediction of the reactor pseudo or steady-state performance (regarding the conversion, selectivity and thermal behavior) and the dynamicreactor response during exploitation are important aspects in finding the optimal control strategy for the forced unsteady state catalytic tubular reactors. The design of an adapted reactor requires knowledge about the influence of its operating conditions on the overall process performance and a precise evaluation of the operating parameters rage for which a sustained dynamic behavior is obtained. An apriori estimation of the system parameters result in diminution of the computational efforts. Usually the convergence of unsteady state reactor systems requires integration over hundreds of cycles depending on the initial guess of the parameter values. The investigation of various operation models and thermal transfer strategies give reliable means to obtain recuperative and regenerative devices which are capable to maintain an auto-thermal behavior in case of low exothermic reactions. In the present research work a gradual analysis of the SCR of NOx with ammonia process in forced unsteady-state reactors was realized. The investigation covers the presentationof the general problematic related to the effect of noxious emissions in the environment, the analysis of the suitable catalysts types for the process, the mathematical analysis approach for modeling and finding the system solutions and the experimental investigation of the device found to be more suitable for the present process. In order to gain information about the forced unsteady state reactor design, operation, important system parameters and their values, mathematical description, mathematicalmethod for solving systems of partial differential equations and other specific aspects, in a fast and easy way, and a case based reasoning (CBR) approach has been used. This approach, using the experience of past similarproblems and their adapted solutions, may provide a method for gaining informations and solutions for new problems related to the forced unsteady state reactors technology. As a consequence a CBR system was implemented and a corresponding tool was developed. Further on, grooving up the hypothesis of isothermal operation, the investigation by means of numerical simulation of the feasibility of the SCR of NOx with ammonia in the RFRand in the RN with variable feeding position was realized. The hypothesis of non-isothermal operation was taken into account because in our opinion ifa commercial catalyst is considered, is not possible to modify the chemical activity and its adsorptive capacity to improve the operation butis possible to change the operation regime. In order to identify the most suitable device for the unsteady state reduction of NOx with ammonia, considering the perspective of recuperative and regenerative devices, a comparative analysis of the above mentioned two devices performance was realized. The assumption of isothermal conditions in the beginningof the forced unsteadystate investigation allowed the simplification of the analysis enabling to focus on the impact of the conditions and mode of operation on the dynamic features caused by the trapping of one reactant in the reactor, without considering the impact of thermal effect on overall reactor performance. The non-isothermal system approach has been investigated in order to point out the important influence of the thermal effect on overall reactor performance, studying the possibility of RFR and RN utilization as recuperative and regenerative devices and the possibility of achieving a sustained auto-thermal behavior in case of lowexothermic reaction of SCR of NOx with ammonia and low temperature gasfeeding. Beside the influence of the thermal effect, the influence of the principal operating parameters, as switching time, inlet flow rate and initial catalyst temperature have been stressed. This analysis is important not only because it allows a comparison between the two devices and optimisation of the operation, but also the switching time is the main operating parameter. An appropriate choice of this parameter enables the fulfilment of the process constraints. The level of the conversions achieved, the more uniform temperature profiles, the uniformity ofcatalyst exploitation and the much simpler mode of operation imposed the RN as a much more suitable device for SCR of NOx with ammonia, in usual operation and also in the perspective of control strategy implementation. Theoretical simplified models have also been proposed in order to describe the forced unsteady state reactors performance and to estimate their internal temperature and concentration profiles. The general idea was to extend the study of catalytic reactor dynamics taking into account the perspectives that haven't been analyzed yet. The experimental investigation ofRN revealed a good agreement between the data obtained by model simulation and the ones obtained experimentally.
Resumo:
En este trabajo se investiga la persistencia de las estimaciones puntuales subjetivas de rendimientos en cultivos anua- les realizadas por un amplio grupo de agricultores. La persistencia en el tiempo es una condición necesaria para la co- herencia y la confiabilidad de las estimaciones subjetivas de variables aleatorias. Los sujetos entrevistados estimaron valores puntuales de rendimientos de cultivos anuales (rendimientos medio, mayor, mínimo y más frecuente). Se han encontrado diferencias relativas poco importantes en todas las variables, excepto en los rendimientos mínimos, donde existe una alta dispersión. Los resultados son interesantes para estimar la adecuación de las técnicas de estimación de probabilidades subjetivas para ser utilizadas en los sistemas de ayuda en la toma de decisiones en agricultura.
Resumo:
Kaksifaasivirtauksen kuvaamiseen käytettävät mallit, ja menetelmät kaksifaasivirtauksen painehäviön määrittämiseksi kehittyvät yhä monimutkaisimmiksi. Höyrystinputkissa tapahtuvien painehäviöiden arvioinnin vaatiman laskennan suorittamiseksi tietokoneohjelman kehittäminen on välttämätöntä. Tässä työssä on kehitetty itsenäinen PC-ohjelma painehäviöiden arvioimiseksi pakotetulle konvektiovirtaukselle pystysuorissa höyrykattilan höyrystinputkissa. Veden ja vesihöyryn aineominaisuuksien laskentaan käytetään IAPWS-IF97 –yhtälökokoelmaa sekä muita tarvittavia IAPWS:n suosittelemia yhtälöitä. Höyrystinputkessa kulloinkin vallitsevan virtausmuodon määrittämiseen käytetään sovelluskelpoisia virtausmuotojen välisiä rajoja kuvaavia yhtälöitä. Ohjelmassa käytetään painehäviön määritykseen kirjallisuudessa julkaistuja yhtälöitä, virtausmuodosta riippuen, alijäähtyneelle virtaukselle, kupla-, tulppa- ja rengasvirtaukselle sekä tulistetun höyryn virtaukselle. Ohjelman laskemia painehäviöarvioita verrattiin kirjallisuudesta valittuihin mittaustuloksiin. Laskettujen painehäviöiden virhe vaihteli välillä –19.5 ja +23.9 %. Virheiden itseisarvojen keskiarvo oli 12.8 %.
Resumo:
Opinnäytetyön tavoitteena oli analysoida ja kehittää lopputuotteiden varastointia Halton Oy:ssä. Työ toteutettiin, koska yrityksen laajasta tuotevalikoimasta monia nimikkeitä varastoidaan tällä hetkellä ja ne sitovat runsaasti pääomaa varastoon. Lisäksi yrityksellä on vain rajallinen varastointitila käytettävissä ja sitä haluttiin hyödyntää optimaalisesti. Työssä suunniteltiin yritykselle varastoitavien tuotenimikkeiden hallintaprosessi ja lisäksi tutkittiin kuinka yritys voisi tarjota tuotteitaan nopeammin tärkeimmille ulkomaan markkina-alueille. Työn alussa huomio kohdistui myynniltään vähemmän merkittäviin varastonimikkeisiin, joita analysoitiin suunniteltujen kriteerien avulla. Tarkoituksena oli selvittää, mitkä varastonimikkeistä voitaisiin siirtää tilausohjautuviksi. Tärkeimpinä analysointikriteereinä käytettiin nimikkeiden alhaista myyntimäärää, lyhyttä tuotannonläpimenoaikaa sekä varastoitavien nimikkeiden lukumäärää tuoteryhmässä. Työssä huomioitiin kuitenkin myös muita mahdollisia syitä varastointiin. Lisäksi tehtiin havaintoja tilausohjautuvista nimikkeistä, jotka saattaisivat tarvita varastointia. Suunniteltuun hallintaprosessiin sisältyi kriteerien lisäksi myös varastotasojen määrittäminen yrityksen nykyisen varastomallin pohjalta. Työssä tutkittiin kuitenkin myös mahdollisia tulevaisuuden varastomalleja, joiden tarkoituksena olisi parantaa asiakaspalvelua ulkomailla. Tutkimus keskittyi pääasiassa nimikkeiden kysyntöjen analysointiin eri varastomallien myyntialueilla.
Resumo:
BACKGROUND: After cardiac surgery with cardiopulmonary bypass (CPB), acquired coagulopathy often leads to post-CPB bleeding. Though multifactorial in origin, this coagulopathy is often aggravated by deficient fibrinogen levels. OBJECTIVE: To assess whether laboratory and thrombelastometric testing on CPB can predict plasma fibrinogen immediately after CPB weaning. PATIENTS / METHODS: This prospective study in 110 patients undergoing major cardiovascular surgery at risk of post-CPB bleeding compares fibrinogen level (Clauss method) and function (fibrin-specific thrombelastometry) in order to study the predictability of their course early after termination of CPB. Linear regression analysis and receiver operating characteristics were used to determine correlations and predictive accuracy. RESULTS: Quantitative estimation of post-CPB Clauss fibrinogen from on-CPB fibrinogen was feasible with small bias (+0.19 g/l), but with poor precision and a percentage of error >30%. A clinically useful alternative approach was developed by using on-CPB A10 to predict a Clauss fibrinogen range of interest instead of a discrete level. An on-CPB A10 ≤10 mm identified patients with a post-CPB Clauss fibrinogen of ≤1.5 g/l with a sensitivity of 0.99 and a positive predictive value of 0.60; it also identified those without a post-CPB Clauss fibrinogen <2.0 g/l with a specificity of 0.83. CONCLUSIONS: When measured on CPB prior to weaning, a FIBTEM A10 ≤10 mm is an early alert for post-CPB fibrinogen levels below or within the substitution range (1.5-2.0 g/l) recommended in case of post-CPB coagulopathic bleeding. This helps to minimize the delay to data-based hemostatic management after weaning from CPB.