961 resultados para Ships, Iron and steel.
Resumo:
Pyridinium poly(hydrogen fluoride) reacts with the oxide of vanadium(V) and chlorides of chromium(III), iron (III) and Co(II) at room temperature forming the pyridinium salts of hexafluoro vanadate(V), hexafluorochromate(III), hexafluoroferrate(III) and hexafluorocobaltate(II) in near quantitative yields (80%). These pyridinium salts are the precursors for the preparation of the alkali metal hexafluorometallates by metathetic reactions in acetonitrile medium with the corresponding metal chlorides. The prepared salts have been identified by their infrared spectral data and elemental analysis.
Resumo:
European accounts from the 17th century onwards have referred to the repute and manufacture of “wootz’, a traditional crucible steel made especially in parts of southern India in the former provinces of Golconda, Mysore and Salem. Pliny's Natural History mentions the import of iron and steel from the Seres which have been thought to refer to the ancient southern Indian kingdom of the Cheras. As yet the scale of excavations and surface surveys is too limited to link the literary accounts to archaeometallurgical evidence, although pioneering exploratory investigations have been made by scholars, especially on the pre-industrial production sites of Konasamudram and Gatihosahalli discussed in 18th-19th century European accounts. In 1991–2 during preliminary surveys of ancient base metal mining sites, Srinivasan came across unreported dumps with crucible fragments at Mel-Siruvalur in Tamil Nadu, and Tintini and Machnur in Karnataka and she collected surface specimens from these sites as well as from the known site of Gatihosahalli. She was also given crucible fragments by the Tamil University, Tanjavur, from an excavated megalithic site at Kodumanal, dated to ca 2nd c. Bc, mentioned in Tamil Sangam literature (ca 3rd c. BC-3rd c. AD), and very near Karur, the ancient capital of the Sangam Cheras. Analyses of crucible fragments from the surface collection at Mel-Siruvalur showed several iron prills with a uniform pearlitic structure of high-carbon hypereutectoid steel (∼1–1.5% C) suggesting that the end product was uniformly a high-carbon steel of a structure consistent with those of high-carbon steels used successfully to experimentally replicate the watered steel patterns on ‘Damascus’ swords. Investigations indicate that the process was of carburisation of molten low carbon iron (m.p. 1400° C) in crucibles packed with carbonaceous matter. The fabric of crucibles from all the above mentioned sites appears similar. Preliminary investigations on these crucibles are thus reported to establish their relationship to crucible production of carbon steel and to thereby extend the known horizons of this technology further.
Resumo:
4 p.
Resumo:
35 p.
Resumo:
In order to develop better catalysts for the cleavage of aryl-X bonds fundamental studies of the mechanism and individual steps of the mechanism have been investigated in detail. As the described studies are difficult at best in catalytic systems, model systems are frequently used. To study aryl-oxygen bond activation, a terphenyl diphosphine scaffold containing an ether moiety in the central arene was designed. The first three chapters of this dissertation focus on the studies of the nickel complexes supported by this diphosphine backbone and the research efforts in regards to aryl-oxygen bond activation.
Chapter 2 outlines the synthesis of a variety of diphosphine terphenyl ether ligand scaffolds. The metallation of these scaffolds with nickel is described. The reactivity of these nickel(0) systems is also outlined. The systems were found to typically undergo a reductive cleavage of the aryl oxygen bond. The mechanism was found to be a subsequent oxidative addition, β-H elimination, reductive elimination and (or) decarbonylation.
Chapter 3 presents kinetic studies of the aryl oxygen bond in the systems outlined in Chapter 2. Using a series of nickel(0) diphosphine terphenyl ether complexes the kinetics of aryl oxygen bond activation was studied. The activation parameters of oxidative addition for the model systems were determined. Little variation was observed in the rate and activation parameters of oxidative addition with varying electronics in the model system. The cause of the lack of variation is due to the ground state and oxidative addition transition state being affected similarly. Attempts were made to extend this study to catalytic systems.
Chapter 4 investigates aryl oxygen bond activation in the presence of additives. It was found that the addition of certain metal alkyls to the nickel(0) model system lead to an increase in the rate of aryl oxygen bond activation. The addition of excess Grignard reagent led to an order of magnitude increase in the rate of aryl oxygen bond activation. Similarly the addition of AlMe3 led to a three order of magnitude rate increase. Addition of AlMe3 at -80 °C led to the formation of an intermediate which was identified by NOESY correlations as a system in which the AlMe3 is coordinated to the ether moiety of the backbone. The rates and activation parameters of aryl oxygen bond activation in the presence of AlMe3 were investigated.
The last two chapters involve the study of metalla-macrocycles as ligands. Chapter 5 details the synthesis of a variety of glyoxime backbones and diphenol precursors and their metallation with aluminum. The coordination chemistry of iron on the aluminum scaffolds was investigated. Varying the electronics of the aluminum macrocycle was found to affect the observed electrochemistry of the iron center.
Chapter 6 extends the studies of chapter 5 to cobalt complexes. The synthesis of cobalt dialuminum glyoxime metal complexes is described. The electrochemistry of the cobalt complexes was investigated. The electrochemistry was compared to the observed electrochemistry of a zinc analog to identify the redox activity of the ligand. In the presence of acid the cobalt complexes were found to electrochemically reduce protons to dihydrogen. The electronics of the ancillary aluminum ligands were found to affect the potential of proton reduction in the cobalt complexes. These potentials were compared to other diglyoximate complexes.
Resumo:
A study of the geochemical cycling of iron and manganese in a seasonally stratified lake, Esthwaite water is described. This work is based on speculative ideas on environmental redox chemistry of iron which were proposed by C.H. Mortimer in the 1940's. These observations have been verified and some speculations confirmed, along with a new understanding of the manganese cycle, and detailed information on the particulate forms of both iron and manganese. Details on the mechanisms and transformations of iron have also emerged.
Resumo:
Sediment and oyster (Saccostrea cucullata) samples were collected at Dhanda, a fishing village in Mumbai, Maharashtra. The samples were analysed for copper, zinc, iron and manganese contents. Metal concentrations in the sediments and bioaccumulated levels in oysters were correlated. There is no positive correlation between the total sedimentary levels of metals analysed and the bioaccumulated levels of respective metals in oyster. A positive correlation between the bioavailable fractions of zinc, iron and manganese, and the bioaccumulated levels exists. Copper, however, shows a negative correlation with respect to the bioaccumulated levels.
Resumo:
A ball-on-flat reciprocating micro-tribometer has been used to measure the friction coefficient between aluminium alloy strip and a steel ball. A relatively small ball and correspondingly low contact load is used to give a contact width of the order of 100μm, closer to asperity contact widths than generally found for this type of test. The effects of load, initial strip surface roughness, lubricants and boundary additives are investigated. It is found that the friction coefficient is significantly reduced by the addition of a lubricant. Observations of the wear tracks and ball surface show that the material transfer from aluminium to the ball is reduced in the presence of the lubricant. The initial friction coefficient is further reduced by the addition of a boundary additive, but the friction coefficient after 8 cycles is unchanged. Copyright © 2004 by Springer Science+Business Media, Inc.
Resumo:
We present in two parts an assessment of global manufacturing. In the first part, we review economic development, pollution, and carbon emissions from a country perspective, tracking the rise of China and other developing countries. The results show not only a rise in the economic fortunes of the newly industrializing nations, but also a significant rise in global pollution, particularly air pollution and CO2 emissions largely from coal use, which alter and even reverse previous global trends. In the second part, we change perspective and quantitatively evaluate two important technical strategies to reduce pollution and carbon emissions: energy efficiency and materials recycling. We subdivide the manufacturing sector on the basis of the five major subsectors that dominate energy use and carbon emissions: (a) iron and steel, (b) cement, (c) plastics, (d) paper, and (e) aluminum. The analysis identifies technical constraints on these strategies, but by combined and aggressive action, industry should be able to balance increases in demand with these technical improvements. The result would be high but relatively flat energy use and carbon emissions. The review closes by demonstrating the consequences of extrapolating trends in production and carbon emissions and suggesting two options for further environmental improvements, materials efficiency, and demand reduction. © 2013 by Annual Reviews. All rights reserved.