937 resultados para Shell utilization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent evidence that dissolved organic carbon (DOC) is a significant component of the organic carbon flux below the photic layer of the ocean (1), together with verification of high respiration rates in the dark ocean (2), suggests that the downward flux of DOC may play a major role in supporting respiration there. Here we show, on the basis of examination of the relation between DOC and apparent oxygen utilization (AOU), that the DOC flux supports ~10% of the respiration in the dark ocean. The contribution of DOC to pelagic respiration below the surface mixed layer can be inferred from the relation between DOC and apparent oxygen utilization (AOU, µM O2), a variable quantifying the cumulative oxygen consumption since a water parcel was last in contact with the atmosphere. However, assessments of DOC/AOU relations have been limited to specific regions of the ocean (3, 4) and have not considered the global ocean. We assembled a large data set (N = 9824) of concurrent DOC and AOU observations collected in cruises conducted throughout the world's oceans (fig. S1, table S1) to examine the relative contribution of DOC to AOU and, therefore, respiration in the dark ocean. AOU increased from an average (±SE) 96.3 ± 2.0 µM at the base of the surface mixed layer (100 m) to 165.5 ± 4.3 µM at the bottom of the main thermocline (1000 m), with a parallel decline in the average DOC from 53.5 ± 0.2 to 43.4 ± 0.3 µM C (Fig. 1). In contrast, there is no significant decline in DOC with increasing depth beyond 1000 m depth (Fig. 1), indicating that DOC exported with overturning circulation plays a minor role in supporting respiration in the ocean interior (5). Assuming a molar respiratory quotient of 0.69, the decline in DOC accounts for 19.6 ± 0.4% of the AOU within the top 1000 m (Fig. 1). This estimate represents, however, an upper limit, because the correlation between DOC and AOU is partly due to mixing of DOC-rich warm surface waters with DOC-poor cold thermocline waters (6). Removal of this effect by regressing DOC against AOU and water temperature indicates that DOC supports only 8.4 ± 0.3% of the respiration in the mesopelagic waters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate shell size variation among gastropod faunas of fossil and recent long-lived European lakes and discuss potential underlying processes. Location: 23 long-lived lakes of the Miocene to Recent of Europe. Methods: Based on a dataset of 1412 species of both fossil and extant lacustrine gastropods, we assessed differences in shell size in terms of characteristics of the faunas (species richness, degree of endemism, differences in family composition) and the lakes (surface area, latitude and longitude of lake centroid, distance to closest neighbouring lake) using multiple and linear regression models. Because of a strong species-area relationship, we used resampling to determine whether any observed correlation is driven by that relationship. Results: The regression models indicated size range expansion rather than unidirectional increase or decrease as the dominant pattern of size evolution. The multiple regression models for size range and maximum and minimum size were statistically significant, while the model with mean size was not. Individual contributions and linear regressions indicated species richness and lake surface area as best predictors for size changes. Resampling analysis revealed no significant effects of species richness on the observed patterns. The correlations are comparable across families of different size classes, suggesting a general pattern. Main conclusions: Among the chosen variables, species richness and lake surface area are the most robust predictors of shell size in long-lived lake gastropods. Although the most outstanding and attractive examples for size evolution in lacustrine gastropods derive from lakes with extensive durations, shell size appears to be independent of the duration of the lake as well as longevity of a species. The analogue of long-lived lakes as 'evolutionary islands' does not hold for developments of shell size because different sets of parameters predict size changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The carbonate shell of the bivalve Arctica islandica has been recognized, for more than a decade, as a potentially important marine geochemical biorecorder owing to this species' great longevity (200+ years) and wide geographic distribution throughout the northern North Atlantic Ocean, a region vital to global climate and ocean circulation. However, until now this potential has not been realized owing to the difficulty of precisely sampling the shell of this slow growing species. Using newly available automated microsampling techniques combined with micromass stable isotope mass spectrometry, a stable oxygen isotope record (1956-1957 and 1961-1970) has been obtained from a live-captured, 38-year-old A. islandica specimen collected near the former position of the Nantucket Shoals Lightship (41°N. 69°W). The shell's delta18O signal is compared with an expected signal derived from ambient bottom temperature and salinity data recorded at the lightship for the same period. The results show that A islandica's delta18O record (1) is in phase with its growth banding, confirming the annual periodicity of this species' growth bands, (2) is in oxygen isotopic equilibrium with the ambient seawater, (3) shows a consistent shell growth shutdown temperature of ~6°C. which translates into an ~8-month (May-December) shell growth period at this location, and (4) records the ambient bottom temperature with a precision of ~ +/-1.2°C. These results add important information on the life history of this commercially important shellfish species and demonstrate that A. islandica shells can be used to reconstruct inter- and intra-annual records of the continental shelf bottom temperature.