964 resultados para Shaanxi earthquake
Resumo:
This paper describes an experimental investigation of the behaviour of embedded retaining walls under seismic actions. Nine centrifuge tests were carried out on reduced-scale models of pairs of retaining walls in dry sand, either cantilevered or with one level of props near the top. The experimental data indicate that, for maximum accelerations that are smaller than the critical limit equilibrium value, the retaining walls experience significant permanent displacements under increasing structural loads, whereas for larger accelerations the walls rotate under constant internal forces. The critical acceleration at which the walls start to rotate increases with increasing maximum acceleration. No significant displacements are measured if the current earthquake is less severe than earthquakes previously experienced by the wall. The increase of critical acceleration is explained in terms of redistribution of earth pressures and progressive mobilisation of the passive strength in front of the wall. The experimental data for cantilevered retaining walls indicate that the permanent displacements of the wall can be reasonably predicted adopting a Newmark-type calculation with a critical acceleration that is a fraction of the limit equilibrium value.
Resumo:
In an earthquake, underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Such uplift response of the buoyant structure is influenced by the soil it is buried in. In the case of a liquefiable soil deposit, the soil can lose its shear strength significantly in the event of an earthquake. If the soil liquefies fully, the buoyant structure can float towards the soil surface. However, a partly liquefied soil deposit retains some of its initial shear strength and resists the uplift. This paper discusses the different soil conditions and their influence on the uplift response of buoyant structures. © 2012 World Scientific Publishing Company.
Resumo:
Many typical ground improvement techniques that are used for liquefaction remediation, such as in situ densification, are not appropriate for application under existing buildings and more novel techniques are required. This paper describes centrifuge tests investigating the performance of rigid containment walls as a liquefaction remediation method. A simple frame structure, founded on a deep layer of loose, liquefiable sand was tested under earthquake shaking. Centrifuge tests were then carried out with containment walls around the base of the structure, extending through the full depth of the liquefiable layer and also partial depth. It is found that rigid containment walls can be very effective in reducing structural settlements primarily by preventing lateral movement of the foundation sand but the impermeability of the walls may also be important. Improvements in structural settlement are observed even when the walls do not extend through the full depth of the liquefiable layer, if the depth of the walls is greater than the depth of the free field liquefaction. In addition, it is found that the accelerations of the structure are not increased, provided there is no rigid, structural connection between the structure and the containment walls. © 2012 World Scientific Publishing Company.
Resumo:
It is possible and common to obtain equivalent natural frequency and damping for a soil-foundation system from results of experimental or numerical analysis assuming the system has a single degree of freedom. Three approaches to extract natural frequency and damping were applied to the vertically vibrated soil-foundation system. The sensitivity of the computed natural frequency and damping to the soil properties was evaluated through parametric studies. About 10-20% of discrepancy in values of natural frequency was observed due to different approaches. The results help to assess the reliability of equivalent soil properties determined from the reported natural frequency of the system. Finally the results obtained using theoretical predictions with linear soil properties measured in situ were compared to those calculated from experimental data. The prediction and experimental results showed good agreements if the embedment of the foundation is neglected with stepped sine test but considered with impulse test. © 2010 Elsevier Ltd.
Resumo:
The geological profile of many submerged slopes on the continental shelf consists of normally to lightly overconsolidated clays with depths ranging from a few meters to hundreds of meters. For these soils, earthquake loading can generate significant excess pore water pressures at depth, which can bring the slope to a state of instability during the event or at a later time as a result of pore pressure redistribution within the soil profile. Seismic triggering mechanisms of landslide initiation for these soils are analyzed with the use of a new simplified model for clays which predicts realistic variations of the stress-strain-strength relationships as well as pore pressure generation during dynamic loading in simple shear. The proposed model is implemented in a finite element program to analyze the seismic response of submarine slopes. These analyses provide an assessment of the critical depth and estimated displacements of the mobilized materials and thus are important components for the estimation of submarine landslide-induced tsunamis. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressure during successive loading cycles. (C) 2000 Published by Elsevier Science Ltd. | Assessment of seismic performance and estimation of permanent displacements for submerged slopes require the accurate description of the soil's stress-strain-strength relationship under irregular cyclic loading. The geological profile of submerged slopes on the continental shelf typically consists of normally to lightly overconsolidated clays with depths ranging from a few meters to a few hundred meters and very low slope angles. This paper describes the formulation of a simplified effective-stress-based model, which is able to capture the key aspects of the cyclic behavior of normally consolidated clays. The proposed constitutive law incorporates anisotropic hardening and bounding surface principles to allow the user to simulate different shear strain and stress reversal histories as well as provide realistic descriptions of the accumulation of plastic shear strains and excess pore pressures during successive loading cycles.
Resumo:
The vibration behavior of piled foundations is an important consideration in fields such as earthquake engineering, construction, machine-foundation design, offshore structures, nuclear energy, and road and rail development. This paper presents a review of the past 40 years' literature on modeling the frequency-dependent behavior of pile foundations. Beginning with the earliest model of a single pile, adapted from those for embedded footings, it charts the development of the four pile-modeling techniques: the "dynamic Winkler-foundation" approach that uses springs to represent the effect of the soil; elasticcontinuum-type formulations involving the analytical solutions for displacements due to a subsurface disk, cylinder, or other element; boundary element methods; and dynamic finite-element formulations with special nonreflecting boundaries. The modeling of pile groups involves accounting for pile-soil-pile interactions, and four such methods exist: interaction factors; complete pile models; the equivalent pier method; and periodic structure theory. Approaches for validating pile models are also explored. Copyright © 2013 by ASME.
Resumo:
Underground structures located in liquefiable soil deposits are susceptible to floatation following an earthquake event due to their lower unit weight relative to the surrounding saturated soil. Centrifuge tests have been carried out to assess the effectiveness of existing remediation techniques in reducing the uplift of underground structures, namely in situ densification and the use of coarse sand backfill. The centrifuge test results showed that these methods do reduce the uplift displacement of buoyant structures. Their performance was thereafter linked to the theoretical mechanism of floatation of underground structures. Based on the understanding from preceding tests, a further improvement on the use of the coarse sand backfill was carried out, which produced a greater reduction in the uplift displacement of the structure. Each of these techniques, however, does pose issues when applied in the field, such as possible damage to surrounding structures, construction issues and maintenance problems.
Resumo:
Physical models are widely used in the study of geotechnical earthquake engineering phenomena, and the comparison of modelling results to observations from field reconnaissance provides a transparent means of evaluating the design of our physical models. This paper compares centrifuge tests of pile groups in laterally spreading slopes with the response of piled bridge abutments in the 2011 Christchurch earthquake. We show that the model foundation's fixity conditions strongly affect the success with which the mechanism of response of the real abutments is replicated in the tests. © 2012 American Society of Civil Engineers.
Resumo:
Most modern design codes do not allow for movement between a shallow foundation and the underlying soil during seismic loading. Consequently, the full magnitude of seismic energy is transmitted from the soil to the foundation during an earthquake. This energy either has to be dissipated before reaching the superstructure via engineering solutions such as base isolation systems, or the structure itself must withstand the full impact of the earthquake resulting in high material usage and expensive design. However, the inherent hysteric behaviour of soil can be used to isolate a foundation from the underlying soil. As part of a study into the soil-structure-interaction of shallow foundations, methods to optimise foundation isolation were investigated. In this paper the results from centrifuge tests investigating two of these methods are compared to results when no special foundation layout was implemented and the impact of the proposed isolation methods is discussed. © 2010 Taylor & Francis Group, London.
Resumo:
Shallow foundations built on saturated deposits of granular soils in seismically active areas are, regardless of their static bearing capacity, critical structures during seismic events. A single centrifuge experiment involving shallow foundations situated atop a liquefiable soil deposit has been performed to identify the mechanisms involved in the interaction between liquefaction-induced effects on neighboring shallow foundations. Centrifuge test results indicate that liquefaction causes significant settlements of footings, which are affected by the presence of neighboring foundations and can be extremely damaging to the superstructure. The understanding of these interaction effects is very important, mainly in densely populated urban areas. The development of high excess pore-pressures, localized drainage in response to the high transient hydraulic gradients, and earthquake-induced vertical motions to the footings are also important effects that are discussed to assist in enhancing current understanding and ability to predict liquefaction effects on shallow foundations. © 2014 Taylor & Francis Group.
Resumo:
Rock-fill dams are popular in developing countries due to their ease of construction and use of local materials. They are used to store water and to provide flood defences. The presence of such dams in earthquake-prone regions poses risks, particularly from ground liquefaction. In this paper, results from physical model tests on dams with different configurations are presented. Model dams with impermeable cores including sheet pile walls and clay cores were tested and the effect of reservoir water was investigated. High-speed photography was used to capture the response of the model dams allowing the movement of foundation soil below the dam to be established. It is concluded that the stiffness of the impermeable core has a significant influence on the ultimate deformation of the dam. The presence of reservoir water led to increased downstream movements of the dam and differential settlements between the upstream and downstream sides.
Resumo:
The rocking response of structures subjected to strong ground motions is a problem of 'several scales'. While small structures are sensitive to acceleration pulses acting successively, large structures are more significantly affected by coherent low frequency components of ground motion. As a result, the rocking response of large structures is more stable and orderly, allowing effective isolation from the ground without imminent danger of overturning. This paper aims to characterize and predict the maximum rocking response of large and flexible structures to earthquakes using an idealized structural model. To achieve this, the maximum rocking demand caused by different earthquake records was evaluated using several ground motion intensity measures. Pulse-type records which typically have high peak ground velocity and lower frequency content caused large rocking amplitudes, whereas non-pulse type records caused random rocking motion confined to small rocking amplitudes. Coherent velocity pulses were therefore identified as the primary cause of significant rocking motion. Using a suite of pulse-type ground motions, it was observed that idealized wavelets fitted to velocity pulses can adequately describe the rocking response of large structures. Further, a parametric analysis demonstrates that pulse shape parameters affect the maximum rocking response significantly. Based on these two findings, a probabilistic analysis method is proposed for estimating the maximum rocking demand to pulse-type earthquakes. The dimensionless demand maps, produced using these methods, have predictive power in the near-field provided that pulse period and amplitude can be estimated a priori. Use of this method within a probabilistic seismic demand analysis framework is briefly discussed. © 2013 Springer Science+Business Media Dordrecht.