916 resultados para Sediment texture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distribution patterns and petrographical and mineral chemistry data are described for the most representative basement lithologies occuring as clast in the c. 824 m thick Tertiary sedimentary sequence at the CRP-3 drillsite. These are granule to bolder grain size clasts of igneous and metamorphic rocks. Within the basement clast assemblage, granitoid pebbles are the predominant lithology. They consist of dominant grey biotic-bearing monzogranite, pink biotite-hornblende monzogranite, and biotite-bearing leucomomonzgranite. Minor lithologies include: actinolite-bearing leucotonalite, microgranite, biotite-hornblende quartz-monzonitic porphyr, and foliated biotic leucomonzogranite. Metamorphic clasts include rocks of both granitic and sedimentary derivation. They include mylonitic biotic orthogneiss, with or without garnet, muscovite-bearing quartzite, sillimanite-biotite paragneiss, biotite meta-sandstone, biotite-spotted schist, biotite-clacite-clinoamphibole meta-feldspathic arenite, biotite-calcite-clinozoisite meta-siltstone, biotite±clinoamphibole meta-marl, and graphite-bearing marble. As in previous CRP drillcores, the ubiquitous occurence of biotite±hornblende monzogranite pebbles is indicative of a local provenance, closely mirroring the dominance of these lithologies in the on-shore basement, where the Cambro-Ordovician Granite Harbour Intrusive Complex forms the most extensively exposed rock unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subarctic North Pacific Ocean holds a large CO2 reservoir that is currently isolated from the atmosphere by a low-salinity layer. It has recently been hypothesized that the reorganization of these high-CO2 waters may have played a crucial role in the degassing of carbon dioxide to the atmosphere during the last deglaciation. This reorganization would leave some imprint on paleo-productivity records. Here we present 230Th-normalized biogenic fluxes from an intermediate depth sediment core in the Northwest Pacific (RC10-196, 54.7°N, 177.1°E, 1007 m) and place them within the context of a synthesis of previously-published biogenic flux data from 49 deep-sea cores north of 20°N, ranging from 420 to 3968 m water depth. The 230Th-normalized opal, carbonate, and organic carbon fluxes from RC10-196 peak approximately 13,000 calendar years BP during the Bølling/Allerød (B/A) period. Our data synthesis suggests that biogenic fluxes were in general lowest during the last glacial period, increased somewhat in the Northwest Pacific during Heinrich Event 1, and reached a maximum across the entire North Pacific during the B/A period. We evaluate several mechanisms as possible drivers of deglacial change in biogenic fluxes in the North Pacific, including changes in preservation, sediment focusing, sea ice extent, iron inputs, stratification, and circulation shifts initiated in the North Atlantic and North Pacific. Our analysis suggests that while micronutrient sources likely contributed to some of the observed changes, the heterogeneity in timing of glaciogenic retreat and sea level make these mechanisms unlikely causes of region-wide contemporaneous peaks in export production. We argue that paleo-observations are most consistent with ventilation increases in both the North Pacific (during H1) and North Atlantic (during B/A) being the primary drivers of increases in biogenic flux during the deglaciation, as respectively they were likely to bring nutrients to the surface via increased vertical mixing and shoaling of the global thermocline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to assess how insolation-driven climate change superimposed on sea level rise and millennial events influenced the Red Sea during the Holocene, we present new paleoceanographic records from two sediment cores to develop a comprehensive reconstruction of Holocene circulation dynamics in the basin. We show that the recovery of the planktonic foraminiferal fauna after the Younger Dryas was completed earlier in the northern than in the central Red Sea, implying significant changes in the hydrological balance of the northern Red Sea region during the deglaciation. In the early part of the Holocene, the environment of the Red Sea closely followed the development of the Indian summer monsoon and was dominated by a circulation mode similar to the current summer circulation, with low productivity throughout the central and northern Red Sea. The climatic signal during the late Holocene is dominated by a faunal transient event centered around 2.4 ka BP. Its timing corresponds to that of North Atlantic Bond event 2 and to a widespread regionally recorded dry period. This faunal transient is characterized by a more productive foraminiferal fauna and can be explained by an intensification of the winter circulation mode and high evaporation. The modern distribution pattern of planktonic foraminifera, reflecting the prevailing circulation system, was established after 1.7 ka BP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lake George, New York, is the site of a new discovery of iron-manganese nodules. These nodules occur at a water depth between 21 and 36 m along a stretch of lake extending for about 5 mi north and south of the Narrows, a constricted island-dotted area which separates the north and south Lake George basins. Nodules occur on or within the uppermost 5 cm of a varved glacial clay. Some areas are solidly floored with a carpet of nodules in areas where active currents keep the nodules exposed. The nodules form around nuclei which consist of clay and less commonly of spore capsules, detrital particles, or bark. By their shape we recognize three types of nodules: spherical, discoidal, and lumps. On X-ray examination all nodules show small goethite peaks; in one nodule the manganese mineral birnessite was identified. Manganese and part of the iron appears to be in X-ray amorphous ferromanganese compounds. The Lake George nodules are enriched in iron with respect to marine nodules but are lower in manganese. They have a higher trace element concentration than nodules from other known freshwater lake occurrences, but a lower concentration than marine nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abundant serpentinite seamounts are found along the outer high of the Mariana forearc at the top of the inner slope of the trench. One of them, Conical Seamount, was drilled at Sites 778, 779, and 780 during Leg 125. The rocks recovered at Holes 779A and 780C, respectively, on the flanks and at the summit of the seamount, include moderately serpentinized depleted harzburgites and some dunites. These rocks exhibit evidence of resorption of the orthopyroxene, when present, and the local presence of very calcic-rich diopside in veins oblique to the main high-temperature foliation of the rock. The peridotites, initially well-foliated with locally poikiloblastic textures, show overprints of a two-stage deformation history: (1) a high-temperature (>1000°C), low-stress (0.02 GPa), homogeneous deformation that has led to the present Porphyroclastic textures displayed by the rocks and (2) heterogeneous ductile shearing at a much higher stress (0.05 GPa). This heterogeneous shearing probably describes a single tectonic event because it began at high temperatures, producing dynamic recrystallization of olivine in the shear zone, and ended at low temperatures in the stability field of chlorite and serpentine. In a few samples, olivine shows evidence of quasi-hydrostatic recrystallization at a very high temperature. Here, we propose that this recrystallization was related to fluid/magma percolation, a process that can also account for the resorption of the orthopyroxene and for the late crystallization of diopside veins in the rock. The impregnation by fluid or magma, development of the main high-temperature, low-stress deformation, and subsequent migration recrystallization of olivine probably occurred in a mantle fragment involved in the arc formation. In addition, this mantle has preserved structures that may have formed earlier in the oceanic lithosphere upon which the arc formed. Heterogeneous ductile shear zones in the peridotites may have developed during uplift. The "cold" deformation may have taken place during diapiric rise of hot mantle that underwent subsequent serpentinization or gliding along normal faults associated with the extension of the eastern margin of the forearc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

From 1978 to 1981, intensive sedimentological investigations were carried out on the Northfrisian intertidal shoals between the small island of Gröde and Nordstrand lsland as a part of an interdisciplinary research projekt. The objective of this sedimentological study was to reveal long and short term tendencies in sedimentation and erosion in the environment. The presented study mainly concentrated on surface mapping in the tidal flats which based on more than 5000 sediment samples. The relative amounts of the grain-size fractions <0.063 mm and >0.125 mm are presented on maps. Predominant sediment typs are well sorted fine sands ("Wattsand") and muddy sands ("Schlicksand"), pure muds covering only small areas. The fine-grained deposits are either found in the lee-side of an island in elongated bays having a low waterdepth during high tide near the shore or near exposed "Klei" outcrops as well as sporadically on the edge of tidal rills. Together with standardized fields observations of biological and physical properties, the maps indicate a slight erosive tendency in large sections of the investigated area.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oceanographic and tectonic conditions of accretionary margins are well-suited for several potential processes governing methane generation, storage and release. To identify the relevant methane evolution pathways in the northern Cascadia accretionary margin, a four-site transect was drilled during Integrated Ocean Drilling Program Expedition 311. The d13C values of methane range from a minimum value of -82.2 per mil on an uplifted ridge of accreted sediment near the deformation front (Site U1326, 1829 mbsl, meters below sea level) to a maximum value of -39.5 per mil at the most landward location within an area of steep canyons near the shelf edge (Site U1329, 946 mbsl). An interpretation based solely on methane isotope values might conclude the 13C-enrichment of methane indicates a transition from microbially- to thermogenically-sourced methane. However, the co-existing CO2 exhibits a similar trend of 13C-enrichment along the transect with values ranging from -22.5 per mil to +25.7 per mil. The magnitude of the carbon isotope separation between methane and CO2 (Ec = 63.8 ± 5.8) is consistent with isotope fractionation during microbially mediated carbonate reduction. These results, in conjunction with a transect-wide gaseous hydrocarbon content composed of > 99.8% (by volume) methane and uniform dDCH4 values (-172 per mil ± 8) that are distinct from thermogenic methane at a seep located 60 km from the Expedition 311 transect, suggest microbial CO2 reduction is the predominant methane source at all investigated sites. The magnitude of the intra-site downhole 13C-enrichment of CO2 within the accreted ridge (Site U1326) and a slope basin nearest the deformation front (Site U1325, 2195 mbsl) is ~ 5 per mil. At the mid-slope site (Site U1327, 1304 mbsl) the downhole 13C-enrichment of the CO2 is ~ 25 per mil and increases to ~ 40 per mil at the near-shelf edge Site U1329. This isotope fractionation pattern is indicative of more extensive diagenetic alteration at sites with greater 13C-enrichment. The magnitude of the 13C-enrichment of CO2 correlates with decreasing sedimentation rates and a diminishing occurrence of stratigraphic gas hydrate. We suggest the decreasing sedimentation rates increase the exposure time of sedimentary organic matter to aerobic and anaerobic degradation, during burial, thereby reducing the availability of metabolizable organic matter available for methane production. This process is reflected in the occurrence and distribution of gas hydrate within the northern Cascadia margin accretionary prism. Our observations are relevant for evaluating methane production and the occurrence of stratigraphic gas hydrate within other convergent margins.