991 resultados para Seasonal migration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diel vertical migration (DVM) of the whole plankton community was investigated in the central and coastal Irish Sea. Generally, more than 60% of the plankton did not perform significant DVM. A correlation analysis of the weighted mean depths of different organisms and their potential predators suggested relationships between two groups, Oithona spp., copepod nauplii and fish larvae, and between Pseudocalanus elongatus, Calanus spp. and chaetognaths. The organisms showing significant DVM were chaetognaths (Sagitta spp.), Calanus spp. and P. elongatus. Calanus spp. showed clear ontogenic variations in DVM, and along with P. elongatus demonstrated great flexibility both in the amplitude and direction of migration. P. elongatus did not migrate in the coastal area and Calanus spp. showed a clear reverse migration. The direction of migration appeared to be related to the vertical position of the chaetognaths in the water column during the day.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Habitat selection processes in highly migratory animals such as sharks and whales are important to understand because they influence patterns of distribution, availability and therefore catch rates. However, spatial strategies remain poorly understood over seasonal scales in most species, including, most notably, the plankton-feeding basking shark Cetorhinus maximus. It was proposed nearly 50 yr ago that this globally distributed species migrates from coastal summer-feeding areas of the northeast Atlantic to hibernate during winter in deep water on the bottom of continental-shelf slopes. This view has perpetuated in the literature even though the 'hibernation theory' has not been tested directly. We have now tracked basking sharks for the first time over seasonal scales (1.7 to 6.5 mo) using 'pop-up' satellite archival transmitters. We show that they do not hibernate during winter but instead undertake extensive horizontal (up to 3400 km) and vertical (> 750 m depth) movements to utilise productive continental-shelf and shelf-edge habitats during summer, autumn and winter. They travel long distances (390 to 460 km) to locate temporally discrete productivity 'hotspots' at shelf-break fronts, but at no time were prolonged movements into open-ocean regions away from shelf waters observed. Basking sharks have a very broad vertical diving range and can dive beyond the known range of planktivorous whales. Our study suggests this species can exploit shelf and slope-associated zooplankton communities in mesopelagic (200 to 1000 m) as well as epipelagic habitat (0 to 200 m).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

After 1987, Phytoplankton Colour (a visual estimate of chlorophyll) measured on samples taken by the continuous plankton recorder (CPR) in the North Sea increased substantially, both in level and seasonal extent, compared to earlier years since 1946. Many species of phytoplankton and zooplankton showed marked changes in abundance at about the same time. These events coincided with a large increase in catches of the western stock of the horse mackerel (Trachurus trachurus L.) in the northern North Sea reflecting a northerly expansion of the stock along the shelf edge from the Bay of Biscay to the North Sea after 1987. Using a 3D hydrodynamic model, with input from measured wind parameters, monthly transport of oceanic water into the North Sea has been calculated for the period 1976–1994, integrated for a section from Orkney to Shetland to Norway. A substantial increase in oceanic inflow occurred in the winter months, December to March, from 1988. Higher sea surface temperatures were also measured after 1987 especially in spring and summer months. These biological and physical events may be a response to observed changes in pressure distribution over the North Atlantic. From 1988 onwards, the North Atlantic Oscillation (NAO) index, the pressure difference between Iceland and the Azores, increased to the highest positive level observed in this century. Positive NAO anomalies are associated with stronger and more southerly tracks of the westerly winds and higher temperatures in western Europe. These changing wind distributions may have led to an increase in the northerly advection of water along the western edge of the European shelf and may have assisted the migration of the horse mackerel. This study is possibly a unique demonstration of a correlation between three different trophic levels of a marine ecosystem and hydrographic and atmospheric events at decadal and regional scales. The results emphasise the importance of maintaining into the future long term programmes such as the CPR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plankton collected by the Continuous Plankton Recorder (CPR) survey were investigated for the English Channel, Celtic Sea and Bay of Biscay from 1979 to 1995. The main goal was to study the relationship between climate and plankton and to understand the factors influencing it. In order to take into account the spatial and temporal structure of biological data, a three-mode principal component analysis (PCA) was developed. It not only identified 5 zones characterised by their similar biological composition and by the seasonal and inter-annual evolution of the plankton, it also made species associations based on their location and year-to-year change. The studied species have stronger year-to-year fluctuations in abundance over the English Channel and Celtic Sea than the species offshore in the Bay of Biscay. The changes in abundance of plankton in the English Channel are negatively related to inter-annual changes of climatic conditions from December to March (North Atlantic Oscillation [NAO] index and air temperature). Thus, the negative relationship shown by Fromentin and Planque (1996; Mar Ecol Prog Ser 134:111-118) between year-to-year changes of Calanus finmarchicus abundance in the northern North Atlantic and North Sea and NAO was also found for the most abundant copepods in the Channel. However, the hypothesis proposed to explain the plankton/NAO relationship is different for this region and a new hypothesis is proposed. In the Celtic Sea, a relationship between the planktonic assemblage and the air temperature was detected, but it is weaker than for the English Channel. No relationship was found for the Bay of Biscay. Thus, the local physical environment and the biological composition of these zones appear to modify the relationship between winter climatic conditions and the year-to-year fluctuations of the studied planktonic species. This shows, therefore, that the relationship between climate and plankton is difficult to generalise.