928 resultados para Scaffold, Calcium silicate, Bone regeneration, Mechanical strength
Resumo:
This work addresses the production of lightweight concrete building elements, such as plates, prefabricated slabs for pre-molded and panels of fencing, presenting a singular concrete: the Lightweight Concrete, with special properties such low density and good strength, by means of the joint use of industrial waste of thermosetting unsaturated polyesters and biodegradable foaming agent, named Polymeric Lightweight Concrete. This study covered various features of the materials used in the composition of the Polymeric Lightweight Concrete, using a planning of factorial design 23, aiming at studying of the strength, production, dosage processes, characterization of mechanical properties and microstructural analysis of the transition zone between the light artificial aggregate and the matrix of cement. The results of the mechanical strength tests were analyzed using a computational statistics tool (Statistica software) to understand the behavior and obtain the ideal quantity of each material used in the formula of the Polymeric Lightweight Concrete. The definition of the ideal formula has the purpose of obtaining a material with the lowest possible dry density and resistance to compression in accordance with NBR 12.646/92 (≥ 2.5 MPa after 28 days). In the microstructural characterization by scanning electron microscopy it was observed an influence of the materials in the process of cement hydration, showing good interaction between the wrinkled face of the residue of unsaturated polyesters thermosetting and putty and, consequently, the final strength. The attaining of an ideal formula, given the Brazilian standards, the experimental results obtained in the characterization and comparison of these results with conventional materials, confirmed that the developed Polymeric Lightweight Concrete is suitable for the production of building elements that are advantageous for construction
Resumo:
The partial fixed prosthodontics restoration is used to rehabilitate form and function of partial or total compromised teeth, having to remain permanently joined to remainder tooth. The most useful material on prosthodontics is the feldspar porcelain, commercialized as aluminosilicate powders. Dental porcelains are presented with limited mechanical properties to rehabilitate extensive spaces. The association with Ni-Cr metallic systems (metal-ceramic system) allows that the metallic substructure compensates the fragile porcelain nature, preserving the thermal insulation and aesthetics desirable, as well as reducing the possibility of cracking during matication efforts. Cohesive flaws by low mechanical strength connect the metallic substructure to the oral environment, characterized by a electrolytic solution (saliva), by aggressive temperature, pH cyclic changes and mechanical requests. This process results on ionic liberation that could promote allergic or inflammatory responses, and/or clinical degradation of ceramometal system. The aim of this study was to evaluate the presence of an intermediate titanium layer on the microscopic fracture behavior of porcelains on ceramometal systems. Plasma deposition of titanium films result in regular passivating oxide layers which act as barriers to protect the metallic substrate against the hazardous effects of corrosive saliva. Tribocorrosion tests were performed to simulate the oral environment and mechanical stress, making it possible the early detection of crack formation and growth on metal-ceramic systems, which estimate the adherence between the compounds of this system. Plain samples consisting of dental feldspar porcelain deposited either onto metallic substrates or titanium films were fired and characterized by scanning electron microscopy. The result showed that the titanium film improved the adherence of the system compared to conventional metal-ceramic interfaces, thus holding crack propagation
Resumo:
Piauí state is a major producer of traditional red ceramic burning as bricks, tiles and ceramic tiles, with its main production center located in the city of Teresina. The state has large reserves of raw materials that can be used in the ceramic coating as clays, quartz, talc and carbonates. However, in the preparation of ceramic bodies using only a mixture of clays with different characteristics. The study aims to evaluate the effect of adding two types of carbonates in the ceramic semiporous mass coating produced in Piauí and then to verify the potential use of these carbonates as supplementary raw material product manufactured or the feasibility of obtaining a ceramic plate that meets the specifications for the porous coating. For this, were characterized the ceramic Piauí coating mass, a calcitic carbonate and a dolomitic, were made in the levels of 2, 4, 8, 16, and 32%. The masses were formed by pressing and burneds in two environments: a laboratory furnace (1080°C, 1120°C, 1140°C, and 1160°C) and an industrial furnace (1140°C). Then, following tests of linear shrinkage water absorption, apparent porosity, bulk density and flexural strength. Furthermore, the fired specimens were tested for their macrostructure and microstructure. The results showed the possibility of using the carbonate in ceramic mass flooring produced in Piauí, as added in small proportions improved dimensional stability and increased mechanical strength of ceramics pieces. It also proved itself possible to produce porous coating when added in higher levels
Resumo:
In the State Rio Grande do Norte, Brazil, the most significant deposits of minerals in the production of granite and pegmatite are Seridó region. Municipalities of Parelhas and Equador are the main responsible for the production of feldspar, quartz, kaolin and granite. The ceramic industries are always in search of competitiveness by investing in new products or improving existing techniques. The stoneware is a type of pottery that stands in the market because it presents technical and aesthetic characteristics superior to other existing products. Characteristics of the raw materials initially obtained with chemical analysis and mineralogical analysis are crucial in getting a product that satisfies the conditions in a manufacturing process and is, in principle, directly related to the firing cycle. This research aimed at developing new formulations for the mass production of ceramic stoneware. The raw materials initially characterized were feldspar, quartz, kaolin and granite. As part of the research was developed at the University of Aveiro, in Portugal, we used two clays used in the production of Portuguese ceramics. The raw material Brazilian and Portuguese and the final product, both in Portugal and Brazil, were analyzed for X-ray fluorescence, X-ray diffraction, granulometric analysis, dilatometric analysis, thermal analysis and analysis of scanning electron microscopy (MEV). The specimens prepared at the University of Aveiro (DECV) were sintered at 10000C and 12000C and the specimens prepared in UFRN were sintered at 10000C, 10500C, 11000C, 11500C, 12000C, 12500C and 13000C, but the best results and demonstrating the presence of the mineral mullite were at temperatures of 12000C, 12500C and 13000C. The results showed that the granite waste used may be considered raw material of excellent quality for use in the ceramic industry and coating floors and more accurately by the industry of stoneware. Physical and mechanical tests conducted on samples of the formulations F01 and F02 developed in UFRN showed a water absorption and mechanical strength suitable for the stoneware
Resumo:
The development of activities the of oil and gas sector have promoted the search for suitable materials for cementing oil wells. In the state of the Rio Grande do Norte, the integrity of the cement sheath tends to be impaired during steam injection, a procedure necessary to increase oil recovery in reservoirs with low-viscosity oil. The geopolymer is a material that can be used as alternative cement, since it has been used in the production of fire-resistant components, building structures, and for the control of toxic or radioactive residues. Geopolymers result from condensation polymer alkali aluminosilicates and silicates resulting three-dimensional polymeric structures. They are produced in a manner different from that of Portland cement, which is made an activating solution that is mixed with geopolymer precursor. Among the few works studied allowed us to conclude that the pastes prepared with metakaolin as precursor showed better performance of its properties. Several studies show the addition of waste clay as a means of reducing cost and improving end of the folder properties. On this basis, the goal is to study the influence of the addition of ceramic waste in geopolymer paste. To develop the study of rheology tests were carried out, filtered, thickening time, compressive strength, free water, specific gravity and permeability, according to the American Pretoleum Institute (API). The results for all formulations studied show that the folders have high mechanical strength to a light paste; low filtrate volume, absence of free water, very low permeability, slurry, consistent with a light paste, and thickening time low that can be corrected with the use of a retardant handle. For morphological characterization, microstructural, physical, chemical and thermal tests were carried out by XRD, MEV, DTA, TG, FTIR. In the trial of XRD, it was found that geopolymer is an amorphous material, with a peak of crystalline kaolinite. In tests of TG / DTA, revealed the presence of a significant event, which represents the mass loss related to water, and also observed the reduction of weight loss by increasing the concentration of ceramic waste. In the trial of MEV, we found a uniform matrix without the presence of other phases. In the trial of FT-IR, we observed the presence of the band related to water. From all results it was determined that the optimum concentration range of use is between 2.5 and 5% of waste ceramic
Resumo:
One of the major challenges faced nowadays by oil companies is the exploration of pre-salt basins. Thick salt layers were formed in remote ages as a consequence of the evaporation of sea water containing high concentrations of NaCl and KCl. Deep reservoirs can be found below salt formations that prevent the outflow of oil, thus improving the success in oil prospection. The slurries used in the cement operations of salt layers must be adequate to the properties of those specific formations. At the same time, their resulting properties are highly affected by the contamination of salt in the fresh state. It is t herefore important to address the effects of the presence of salt in the cement slurries in order to assure that the well sheath is able to fulfill its main role to provide zonal isolation and mechanical stability. In this scenario, the objective of the present thesis work was to evaluate the effect of the presence of NaCl and KCl premixed with cement and 40% silica flour on the behavior of cement slurries. Their effect in the presence of CO2 was also investigated. The rheological behavior of slurries containing NaCl and KCl was evaluated along with their mechanical strength. Thermal and microstructural tests were also carried out. The results revealed that the presence of NaCl and KCl affected the pozzolanic activity of silica flour, reducing the strength of the hardened slurries containing salt. Friedel´s salt was formed as a result of the bonding between free Cl- and tricalcium aluminate. The presence of CO2 also contributed to the degradation of the slurries as a result of a process of carbonation/bicarbonataion
Resumo:
The power industry generates as waste ceramic bodies of electrical fuses that are discarded after use. The formulation of ceramic bodies for porcelain electrical insulators using waste from the bodies fuse allocation promotes environmentally appropriate, through the reuse of the material. This work evaluated the technical feasibility of using waste for use in electrical porcelains with formulations containing the residue, feldspar and kaolinite. The raw materials were processed through grinding and sieving to 200 mesh. The ceramic material obtained from the proposed formulations with 25%, 30%, 34% and 40% of the residue went through a vibratory mill for grinding and homogenization, and then were sieved at 325 mesh. The samples were shaped in a uniaxial press, with the application of 25 MPa and sintered at 1100° C, 1150°C, 1200°C, 1225°C and 1250°C, at levels of 20 and 45 minutes. Were also developed bodies of evidence with reference formulations obtained without residue, to establish a comparison on physical, mechanical and electrical. The tests were conducted and technology: linear shrinkage, porosity, water absorption, resistance to bending to three points, measuring insulation resistance electrical resistivity of the material, X-ray diffraction and X-ray fluorescence Waste characterizations pointed to the existence of two phases: mullite and quartz phases are of great importance in the microstructure of the ceramic and this fact reveals a possibility for reuse in electrical porcelains. The mullite is an important constituent because it is a phase that makes it possible to increase the mechanical strength in addition to the body allows the use at high temperatures. The use of ceramic bodies residue fuses, proved feasible for application in electrical porcelain and the most significant results were obtained by the formulations with 25% waste and sintering at 1200°C
Resumo:
Epoxy based nanocomposites with 1 wt % and 3 wt % of nanographite were processed by high shear mixing. The nanographite was obtained by chemical (acid intercalation), thermal (microwave expansion) and mechanical (ultrasonic exfoliation) treatments. The mechanical, electrical and thermal behavior of the nanocomposites was determined and evaluated as a function of the percentage of reinforcement. According to the experimental results, the electrical conductivity of epoxy was not altered by the addition of nanographite in the contents evaluated. However, based on the mechanical tests, nanocomposites with addition of 1 wt.% and 3 wt.% of nanographite showed increase in tensile strength of 16,62 % and 3,20 %, respectively, compared to the neat polymer. The smaller increase in mechanical strength of the nanocomposite with 3 wt.% of nanographite was related to the formation of agglomerates. The addition of 1 wt.% and 3 wt.% of nanographite also resulted in a decrease of 6,25 % and 17,60 %, respectively, in the relative density of the material. Thus, the specific strength of the nanocomposites was approximately 33,33 % greater when compared to the neat polymer. The addition of 1 wt.% and 3 wt.% of nanographite in the material increased the mean values of thermal conductivity in 28,33 % and 132,62 %, respectively, combined with a reduction of 26,11 % and 49,80 % in volumetric thermal capacity, respectively. In summary, it has been determined that an addition of nanographite of the order of 1 wt.% and 3 wt.% produced notable elevations in specific strength and thermal conductivity of epoxy
Resumo:
Composite laminates with plies in different directions finely dispersed are classified as homogenized. The expected benefits of homogenization include increased mechanical strength, toughness and resistance to delamination. The objective of this study was to evaluate the effect of stacking sequence on the tensile strength of laminates. Composite plates were fabricated using unidirectional layers of carbon/epoxy prepreg with configurations [903/303/-303]S and [90/30/-30]3S. Specimens were subjected to tensile and open hole tension (OHT) tests. According to the experimental results, the mean values of strength for the homogenized laminates [90/30/-30]3S were 140% and 120% greater for tensile and OHT tests, respectively, as compared to laminates with configuration [903/303/-303]S. The increase in tensile strength for more homogenized laminates was associated with the increment in interlaminar interfaces, which requires more energy to produce delamination, and the more complicated crack propagation through plies with different orientations. OHT strength was not affected by the presence of the hole due to the predominance of the interlaminar shear stress in relation to the stress concentration produced by the hole
Resumo:
The addition of active silica potentially improves the quality of concrete due to its high reactivity and pore refinement effect. The reactivity of silica is likely related to its charge density. Variations in surface charge alter the reactivity of the material consequently affecting the properties of concrete. The present study aimed at investigating variations in the charge density of silica as a function of acid treatments using nitric or phosphoric acid and different pH values (2.0, 4.0 and 6.0). Effects on concrete properties including slump, mechanical strength, permeability and chloride corrosion were evaluated. To that end, a statistical analysis was carried out and empirical models that correlate studied parameters (pH, acid and cement) with concrete properties were established. The quality of the models was tested by variance analysis. The results revealed that the addition of silica was efficiency in improving the properties of concrete, especially the electrochemical parameters. The addition of silica treated using nitric acid at pH = 4.0 displayed the best cement performance including highest strength, reduced permeability and lowest corrosion current
Resumo:
Doped lanthanum chromite ( LaCrO3 ) has been the most common material used as interconnect in solid oxide fuel cells for high temperature ( SOFC-HT ) that enabling the stack of SOFCs. The reduction of the operating temperature, to around 800 º C, of solid oxide fuel cells enabled the use of metallic interconnects as an alternative to ceramic LaCrO3, From the practical point of view, to be a strong candidate for interconnect the material must have good physical and mechanical properties such as resistance to oxidizing and reducing environments, easy manufacture and appropriate thermo-mechanical properties. Thus, a study on the physic-mechanical interconnects La0,8Sr0,2Cr0,92Co0,08O3 ceramics for SOFC -AT obtained by the method of combustion , as well as thermo-mechanical properties of metallic interconnects (AISI 444) covered with La0,8Ca0,2CrO3 by deposition technique by spray-pyrolysis fuel cells for intermediate temperature (IT-SOFCs). The La0,8Sr0,2Cr0,92Co0,08O3 was characterized by X -ray diffraction(XRD) , density and porosity , Vickers hardness (HV) , the flexural strength at room temperature and 900 °C and scanning electron microscopy (SEM). The X -ray diffraction confirmed the phase formation and LaCrO3 and CoCr2O4, in order 6 GPa hardness and mechanical strength at room temperature was 62 MPa ceramic Interconnector. The coated metal interconnects La0,8Ca0,2CrO3 passed the identification by XRD after deposition of the film after the oxidation test. The oxidative behavior showed increased resistance to oxidation of the metal substrate covered by La0,8Ca0,2CrO3 In flexural strength of the coated metal substrate, it was noticed only in the increased room temperature. The a SEM analysis proved the formation of Cr2O3 and (Cr,Mn)3O4 layers on metal substrate and confirmed the stability of the ceramic La0,8 Ca0,2CrO3 film after oxidative test
Resumo:
Ceramic composites produced with polymerics precursors have been studied for many years, due to the facility of obtaining a complex shape, at low temperature and reduces cost. The main objective of this work is to study the process of sintering of composites of ceramic base consisting of Al2O3 and silicates, reinforced for NbC, through the technique of processing AFCOP, as well as the influence of the addition of LZSA, ICZ and Al as materials infiltration in the physical and mechanical properties of the ceramic composite. Were produced ceramic matrix composites based SiCxOy e Al2O3 reinforced with NbC, by hidrosilylation reaction between D4Vi and D1107 mixtured with Al2O3 as inert filler, Nb and Al as reactive filler. The specimens produced were pyrolised at 1200, 1250 and 1400°C and infiltred with Al, ICZ and LZSA, respectively. Density, porosity, flexural mechanical strength and fracture surface by scanning electron microscopy were evaluated. The microstructure of the composites was investigated by X-ray diffraction to identify the presence of crystalline phases. The composites presented apparent porosity varying of 31 up to 49% and mechanical flexural strength of 14 up to 34 MPa. The infiltration process improviment of the densification and reduction of the porosity, as well as increased the values of mechanical flexural strength. The obtained phases had been identified as being Al3Nb, NbSi2, Nb5S3, Nb3Si and NbC. The samples that were submitted the infiltration process presented a layer next surface with reduced pores number in relation to the total volume
Resumo:
Steam injection is the most used thermal recovery method of oil nowadays because of the high degree of development of the technique that allows high recovery factors. However, injection of superheated steam into the reservoir affects the entire structure of the well, including the cemented layer that presents a retrogression of compressive strength and increases the permeability due to formation of more crystalline and denser phases at temperatures above 110 °C. These changes result in failures in the cement that favor the entrance of formation fluids into the annulus space resulting in unsafe operations and restrictions in the economic life of the well. But the strength retrogression can be prevented by partial replacement of cement by silica-based materials that reduce the CaO/SiO2 ratio of cement slurries changing the trajectory of the reactions, converting those deleterious phases in phases with satisfactory mechanical strength and permeability. The aim of this study was to evaluate the behavior of a ceramic waste material rich in silica in partial and total substitution of a mineral additive used to fight the strength retrogression of cement slurries subjected to high temperatures. The evaluation was made by compression, X-ray diffraction (XRD) and thermogravimetry (TG/DTG). The samples were submitted to a cycle of low temperature (38 °C) for 28 days and a cycle of low temperature followed by exposure to 280 ºC and 1000 psi by 3 days. The results showed that slurries with additions of up to 30% of the waste material are not enough to prevent the strength retrogression, while slurries with additions of the waste material combined with silica flour in various proportions produced hydrated products of low Ca/Si ratios that maintained the compressive strength at satisfactory levels
Resumo:
The production of heavy oil fields, typical in the Northeastern region, is commonly stimulated by steam injection. High bottom hole temperatures are responsible not only for the development of deleterious stresses of the cement sheath but also for cement strength retrogression. To overcome this unfavorable scenario, polymeric admixtures can be added to cement slurries to improve its fracture energy and silica flour to prevent strength retrogression. Therefore, the objective of the present study was to investigate the effect of the addition of different concentrations of polyurethane (5-25%) to cement slurries containing 40% BWOC silica flour. The resulting slurries were characterized using standard API (American Petroleum Institute) laboratory tests. In addition to them, the mechanical properties of the slurries, including elastic modulus and microhardness were also evaluated. The results revealed that density, free water and stability of the composite cement/silica/polyurethane slurries were within acceptable limits. The rheological behavior of the slurries, including plastic viscosity, yield strength and gel strength increased with the addition of 10% BWOC polyurethane. The presence of polyurethane reduced the fluid loss of the slurries as well as their elastic modulus. Composite slurries also depicted longer setting times due to the presence of the polymer. As expected, both the mechanical strength and microhardness of the slurries decreased with the addition of polyurethane. However, at high bottom hole temperatures, the strength of the slurries containing silica and polyurethane was far superior than that of plain cement slurries. In summary, the use of polyurethane combined with silica is an interesting solution to better adequate the mechanical behavior of cement slurries to heavy oil fields subjected to steam injection
Resumo:
Cementing operations may occur at various stages of the life cycle of an oil well since its construction until its definitive abandonment. There are some situations in which the interest zones are depleted or have low fracture pressure. In such cases, the adoption of lowdensity cement slurries is an efficient solution. To this end, there are basically three ways to reduce the density of cement slurries: using microspheres, water extending additives or foamed cement. The objective of this study is to formulate, to study and to characterize lowdensity foamed cement, using an air entrainment surfactant with vermiculite or diatomite as water extenders and stabilizers. The methodology consists on preparation and evaluation of the slurries under the American Petroleum Institute (API) and the Brazilian Association of Technical Standards (ABNT) guidelines. Based on calculated densities between 13 and 15 ppg (1.559 and 1.799 g/cm3), the slurries were prepared with fixed surfactant concentration, varying the concentrations of vermiculite and diatomite and were compared with the base slurries. The results of plastic viscosity, yield point and gel strength and the compressive strength for 24 h showed that the slurries presented suitable rheology and mechanical strength for cementing operations in oil wells, and had their densities reduced between 8.40 and 11.89 ppg (1.007 and 1.426 g/cm3). The conclusion is that is possible, under atmospheric conditions, to obtain light weighted foamed cement slurries with satisfactory rheological and mechanical properties by means of air entrainment and mineral additions with extenders and stabilizers effects. The slurries have great potential for cementing operations; applicability in deep wells, in low fracture gradient formations and in depleted zones and bring cost savings by reducing the cementing consumption