766 resultados para Saharan eteläpuolinen Afrikka
Resumo:
Bulk Ca and Ti contents and Ti/Ca ratio of sediment core GeoB11804-4, measured by ICP-OES after HF/HNO3/H2O2 microwave pressure digestion.
Resumo:
Isotopic ratios of Sr and Nd from lithogenic components of three isochronous core sections recovered from an east-west transect in the Eastern Mediterranean Sea (EMS) have been analyzed. The data are used for a quantitative estimate of the temporal and spatial variation of detrital flux to the EMS, assuming Saharan dust and Aegean/Nile particulate matter as dominant end members. It was established that the carbonate-free Saharan dust flux during deposition of the nonsapropel layers of marine oxygen isotope stage 5.4 (MIS 5.4) was similar to the present flux. During the deposition of sapropels S5 and S6, however, the Saharan dust input was drastically reduced and was not balanced by a change in the riverine influx at this time. Denser vegetation cover during more humid conditions may have reduced physical erosion and sediment removal in the source area. During marine oxygen isotope stage 6.2 (MIS 6.2) a pronounced increase of Saharan dust and detrital influx from the Aegean region is evident and implies more arid conditions in the southern and northern catchment areas. During this period, intersite variations are interpreted in terms of their geographic location relative to the seaways connecting the Aegean Sea and EMS. The width of the straits and hence the amount of sediment entering the eastern basins may have been affected by a low sea level that impeded interbasin sediment dispersal.
Resumo:
We analyzed size-specific dry mass, sinking velocity, and apparent diffusivity in field-sampled marine snow, laboratory-made aggregates formed by diatoms or coccolithophorids, and small and large zooplankton fecal pellets with naturally varying content of ballast materials. Apparent diffusivity was measured directly inside aggregates and large (millimeter-long) fecal pellets using microsensors. Large fecal pellets, collected in the coastal upwelling off Cape Blanc, Mauritania, showed the highest volume-specific dry mass and sinking velocities because of a high content of opal, carbonate, and lithogenic material (mostly Saharan dust), which together comprised ~80% of the dry mass. The average solid matter density within these large fecal pellets was 1.7 g cm**-3, whereas their excess density was 0.25 ± 0.07 g cm**-3. Volume-specific dry mass of all sources of aggregates and fecal pellets ranged from 3.8 to 960 µg mm**-3, and average sinking velocities varied between 51 and 732 m d**-1. Porosity was >0.43 and >0.96 within fecal pellets and phytoplankton-derived aggregates, respectively. Averaged values of apparent diffusivity of gases within large fecal pellets and aggregates were 0.74 and 0.95 times that of the free diffusion coefficient in sea water, respectively. Ballast increases sinking velocity and, thus, also potential O2 fluxes to sedimenting aggregates and fecal pellets. Hence, ballast minerals limit the residence time of aggregates in the water column by increasing sinking velocity, but apparent diffusivity and potential oxygen supply within aggregates are high, whereby a large fraction of labile organic carbon can be respired during sedimentation.
Resumo:
Soil degradation threatens agricultural production and food security in Sub-Saharan Africa. In the coming decades, soil degradation, in particular soil erosion, will become worse through the expansion of agriculture into savannah and forest and changes in climate. This study aims to improve the understanding of how land use and climate change affect the hydrological cycle and soil erosion rates at the catchment scale. We used the semi-distributed, time-continuous erosion model SWAT (Soil Water Assessment Tool) to quantify runoff processes and sheet and rill erosion in the Upper Ouémé River catchment (14500 km**2, Central Benin) for the period 1998-2005. We could then evaluate a range of land use and climate change scenarios with the SWAT model for the period 2001-2050 using spatial data from the land use model CLUE-S and the regional climate model REMO. Field investigations were performed to parameterise a soil map, to measure suspended sediment concentrations for model calibration and validation and to characterise erosion forms, degraded agricultural fields and soil conservation practices. Modelling results reveal current "hotspots" of soil erosion in the north-western, eastern and north-eastern parts of the Upper Ouémé catchment. As a consequence of rapid expansion of agricultural areas triggered by high population growth (partially caused by migration) and resulting increases in surface runoff and topsoil erosion, the mean sediment yield in the Upper Ouémé River outlet is expected to increase by 42 to 95% by 2025, depending on the land use scenario. In contrast, changes in climate variables led to decreases in sediment yield of 5 to 14% in 2001-2025 and 17 to 24% in 2026-2050. Combined scenarios showed the dominance of land use change leading to changes in mean sediment yield of -2 to +31% in 2001-2025. Scenario results vary considerably within the catchment. Current "hotspots" of soil erosion will aggravate, and a new "hotspot" will appear in the southern part of the catchment. Although only small parts of the Upper Ouémé catchment belong to the most degraded zones in the country, sustainable soil and plant management practices should be promoted in the entire catchment. The results of this study can support planning of soil conservation activities in Benin.
Resumo:
A well developed sapropel (S5) was deposited in the eastern Mediterranean during the Last Interglacial (Eemian), 124-119 ka. Freshwater contributions to the basin at this time can be traced using the isotopic composition of Nd in planktonic foraminifera. This enables differentiation between radiogenic sources to the south, under the influence of the African monsoon, and unradiogenic sources to the north, relating to the mid-latitude westerlies. Here we compare new Nd data, from a core in the southeast Aegean Sea, with published data from the Ionian and Levantine Seas. Shifts towards more radiogenic Nd in the lower and middle parts of sapropel S5 are most pronounced in the Ionian Sea record, with epsioln-Nd and d18O G. ruber co-varying more closely here than in the Levantine and Aegean Seas. This is consistent with a freshwater source proximal to the Ionian Sea site, likely indicating a substantial reactivation of rivers flowing northward from the central Saharan watershed. The lack, during S5 deposition, of a noticeable shift towards more unradiogenic Nd in the Aegean record would exclude a large influx of water from the northern borders of the eastern Mediterranean during sapropel deposition. These findings support a scenario whereby the Last Interglacial eastern Mediterranean was influenced strongly by the remote effects of an intensified African monsoon, with more local precipitation in the northern borders contributing relatively little to the sea surface composition.
Resumo:
Title varies slightly.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
Background Estimates of the disease burden due to multiple risk factors can show the potential gain from combined preventive measures. But few such investigations have been attempted, and none on a global scale. Our aim was to estimate the potential health benefits from removal of multiple major risk factors. Methods We assessed the burden of disease and injury attributable to the joint effects of 20 selected leading risk factors in 14 epidemiological subregions of the world. We estimated population attributable fractions, defined as the proportional reduction in disease or mortality that would occur if exposure to a risk factor were reduced to an alternative level, from data for risk factor prevalence and hazard size. For every disease, we estimated joint population attributable fractions, for multiple risk factors, by age and sex, from the direct contributions of individual risk factors. To obtain the direct hazards, we reviewed publications and re-analysed cohort data to account for that part of hazard that is mediated through other risks. Results Globally, an estimated 47% of premature deaths and 39% of total disease burden in 2000 resulted from the joint effects of the risk factors considered. These risks caused a substantial proportion of important diseases, including diarrhoea (92%-94%), lower respiratory infections (55-62%), lung cancer (72%), chronic obstructive pulmonary disease (60%), ischaemic heart disease (83-89%), and stroke (70-76%). Removal of these risks would have increased global healthy life expectancy by 9.3 years (17%) ranging from 4.4 years (6%) in the developed countries of the western Pacific to 16.1 years (43%) in parts of sub-Saharan Africa. Interpretation Removal of major risk factors would not only increase healthy life expectancy in every region, but also reduce some of the differences between regions, The potential for disease prevention and health gain from tackling major known risks simultaneously would be substantial.
Resumo:
Recent studies have indicated that antiretroviral protease inhibitors may affect outcome in malarial disease. We have investigated the antimalarial activities of 6 commonly used antiretroviral agents. Our data indicate that, in addition to the previously published effects on cytoadherence and phagocytosis, the human immunodeficiency virus (HIV)-1 protease inhibitors saquinavir, ritonavir, and indinavir directly inhibit the growth of Plasmodium falciparum in vitro at clinically relevant concentrations. These findings are particularly important in light of both the high rate of malaria and HIV-1 coinfection in sub-Saharan Africa and the effort to employ highly active antiretroviral therapy in these regions.
Resumo:
We report high-precision inductively coupled plasma mass spectrometric (ICP-MS) compositional data for 39 trace elements in a variety of dust deposits, trapped sediments and surface samples from New Zealand and Australia. Dusts collected from the surface of alpine glaciers in the Southern Alps, New Zealand, believed to have undergone long-distance atmospheric transport from Australia, are recognizable on account of their overabundances of Pb and Cu with respect to typical upper crustal values. Long-travelled dust from Australia therefore scavenges these and other metals (e.g. Zn, Sb and Cd) from the atmosphere during transport and deposition. Hence, due to anthropogenic pollution, long-travelled Australian dusts can be recognized by elevated metal contents. The relative abundance of 25 other elements that are not affected by atmospheric pollution, mineral sorting (Zr and Hf) and weathering/solubility (alkali and earth alkali elements) reflects the geochemistry of the dust source sediment. As a result, we are able to establish the provenance of dust using ultra-trace-element chemistry at regional scale. Comparison of long-travelled dust chemistry with potential Australian sources shows that fits of variable quality are obtained. We propose that the best fitting potential source chemistry most likely represents the major dust source area. A binary mixing model is used to demonstrate that admixture of small quantities of local dust provides an even better fitting dust chemistry for the long-travelled dusts. Copyright (c) 2005 John Wiley & Sons, Ltd.
Resumo:
Background Our aim was to calculate the global burden of disease and risk factors for 2001, to examine regional trends from 1990 to 2001, and to provide a starting point for the analysis of the Disease Control Priorities Project (DCPP). Methods We calculated mortality, incidence, prevalence, and disability adjusted life years (DALYs) for 136 diseases and injuries, for seven income/geographic country groups. To assess trends, we re-estimated all-cause mortality for 1990 with the same methods as for 2001. We estimated mortality and disease burden attributable to 19 risk factors. Findings About 56 million people died in 2001. Of these, 10.6 million were children, 99% of whom lived in low-and-middle-income countries. More than half of child deaths in 2001 were attributable to acute respiratory infections, measles, diarrhoea, malaria, and HIV/AIDS. The ten leading diseases for global disease burden were perinatal conditions, lower respiratory infections, ischaemic heart disease, cerebrovascular disease, HIV/AIDS, diarrhoeal diseases, unipolar major depression, malaria, chronic obstructive pulmonary disease, and tuberculosis. There was a 20% reduction in global disease burden per head due to communicable, maternal, perinatal, and nutritional conditions between 1990 and 2001. Almost half the disease burden in low-and-middle-income countries is now from non-communicable diseases (disease burden per head in Sub-Saharan Africa and the low-and-middle-income countries of Europe and Central Asia increased between 1990 and 2001). Undernutrition remains the leading risk factor for health loss. An estimated 45% of global mortality and 36% of global disease burden are attributable to the joint hazardous effects of the 19 risk factors studied. Uncertainty in all-cause mortality estimates ranged from around 1% in high-income countries to 15-20% in Sub-Saharan Africa. Uncertainty was larger for mortality from specific diseases, and for incidence and prevalence of non-fatal outcomes. Interpretation Despite uncertainties about mortality and burden of disease estimates, our findings suggest that substantial gains in health have been achieved in most populations, countered by the HIV/AIDS epidemic in Sub-Saharan Africa and setbacks in adult mortality in countries of the former Soviet Union. our results on major disease, injury, and risk factor causes of loss of health, together with information on the cost-effectiveness of interventions, can assist in accelerating progress towards better health and reducing the persistent differentials in health between poor and rich countries.