886 resultados para Safety Culture, Safety Leadership, Safety Critical Tasks
Resumo:
This report outlines the strategic plan for Iowa Department of Public Safety, goals and mission.
Resumo:
Agency Performance Plan, Iowa Department of Public Safety
Resumo:
Information about roadway departures, rural intersections, and rural speed management countermeasures relevant to Iowa was summarized on webpages (www.ctre.iastate.edu/research-synthesis/) to allow agencies to more effectively target specific types of crashes in Iowa. More information about each of the countermeasures described in this tech transfer summary, as well as speed impacts, reported crash modification factors, costs, usage within Iowa, and Iowa-specific guidance, is available on the Synthesis of Safety-Related Research web pages at www.ctre.iastate.edu/research-synthesis/. The project provides Iowa agencies with a resource (both web pages and relevant publications) to address rural safety. The team is coordinating with the Iowa Local Technical Assistance Program (LTAP), the Iowa Highway Research Board, the Iowa Association of Counties, and other groups to explore additional ways to distribute the information to local and county agencies.
Resumo:
Lane departure crashes are the single largest category of fatal and major injury crashes in Iowa. The Iowa Department of Transportation (DOT) estimates that 60 percent of roadway-related fatal crashes are lane departures and that 39 percent of Iowa’s fatal crashes are single-vehicle run-off-road (SVROR) crashes. Addressing roadway departure was identified as one of the top eight program strategies for the Iowa DOT in their Comprehensive Highway Safety Plan (CHSP). The goal is to reduce lane departure crashes and their consequences through lane departure-related design standards and policies including paved shoulders, centerline and shoulder rumble strips, pavement markings, signs, and median barriers. Lane-Departure Safety Countermeasures: Strategic Action Plan for the Iowa Department of Transportation outlines roadway countermeasures that can be used to address lane departure crashes. This guidance report was prepared by the Institute for Transportation (InTrans) at Iowa State University for the Iowa DOT. The content reflects input from and multiple reviews by both a technical advisory committee and other knowledgeable individuals with the Iowa DOT.
Resumo:
Agency Performance Plan, Iowa Department of Public Safety
Resumo:
Many good maintenance practices are done routinely to ensure safe travel on low-volume local roads. In addition, there are many specific treatments that may go beyond the point of routine maintenance and in fact provide additional safety benefits with a relatively low price tag. The purpose of this publication is to try to assemble many of these treatments that are currently practiced in Iowa by local agencies into one, easy-to-reference handbook that not only provides some clarity to each treatment with photos and narrative, but also features references to agencies currently using that technique. Some strategies that are utilized by Iowa, other states, and are topics of research have also been included to allow the user more information about possible options. Even though some areas overlap, the strategies presented have been grouped together in the following areas: Signing and Delineation, Traffic "Calming," Pavement Marking and Rumble Strips/Stripes, Roadside and Clear Zone, Guardrail and Barriers, Lighting, Pavements and Shoulders, Intersections, Railroad Crossings, Bridges and Culverts, and Miscellaneous. The intention is to make this a “living” document, which will continue to be updated and expanded periodically as other existing practices are recognized or new practices come into being.
Resumo:
Although many larger Iowa cities have staff traffic engineers who have a dedicated interest in safety, smaller jurisdictions do not. Rural agencies and small communities must rely on consultants, if available, or local staff to identify locations with a high number of crashes and to devise mitigating measures. However, smaller agencies in Iowa have other available options to receive assistance in obtaining and interpreting crash data. These options are addressed in this manual. Many proposed road improvements or alternatives can be evaluated using methods that do not require in-depth engineering analysis. The Iowa Department of Transportation (DOT) supported developing this manual to provide a tool that assists communities and rural agencies in identifying and analyzing local roadway-related traffic safety concerns. In the past, a limited number of traffic safety professionals had access to adequate tools and training to evaluate potential safety problems quickly and efficiently and select possible solutions. Present-day programs and information are much more conducive to the widespread dissemination of crash data, mapping, data comparison, and alternative selections and comparisons. Information is available and in formats that do not require specialized training to understand and use. This manual describes several methods for reviewing crash data at a given location, identifying possible contributing causes, selecting countermeasures, and conducting economic analyses for the proposed mitigation. The Federal Highway Administration (FHWA) has also developed other analysis tools, which are described in the manual. This manual can also serve as a reference for traffic engineers and other analysts.
Resumo:
The current issues debate brings together experts around the themes of self-sufficiency (in its national and European aspects) and of needs in cellular blood products. The point of view of the manufacturer and prescribers of blood products are confronted.
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.
Resumo:
Report on the Iowa Department of Public Safety for the year ended June 30, 2014
Resumo:
The Iowa Department of Public Safety (DPS) has a history of dedication and service to the citizens of Iowa and those who visit our state. Since it was first established in 1939, DPS has been the chief law enforcement agency in the State of Iowa. DPS is headquartered in Des Moines, Iowa in the Wallace State Office Building on the Capitol Complex, along with a statewide presence.
Resumo:
PURPOSE: We conducted a phase I multicenter trial in naïve metastatic castrate-resistant prostate cancer patients with escalating inecalcitol dosages, combined with docetaxel-based chemotherapy. Inecalcitol is a novel vitamin D receptor agonist with higher antiproliferative effects and a 100-fold lower hypercalcemic activity than calcitriol. EXPERIMENTAL DESIGN: Safety and efficacy were evaluated in groups of three to six patients receiving inecalcitol during a 21-day cycle in combination with docetaxel (75 mg/m2 every 3 weeks) and oral prednisone (5 mg twice a day) up to six cycles. Primary endpoint was dose-limiting toxicity (DLT) defined as grade 3 hypercalcemia within the first cycle. Efficacy endpoint was ≥30% PSA decline within 3 months. RESULTS: Eight dose levels (40-8,000 μg) were evaluated in 54 patients. DLT occurred in two of four patients receiving 8,000 μg/day after one and two weeks of inecalcitol. Calcemia normalized a few days after interruption of inecalcitol. Two other patients reached grade 2, and the dose level was reduced to 4,000 μg. After dose reduction, calcemia remained within normal range and grade 1 hypercalcemia. The maximum tolerated dose was 4,000 μg daily. Respectively, 85% and 76% of the patients had ≥30% PSA decline within 3 months and ≥50% PSA decline at any time during the study. Median time to PSA progression was 169 days. CONCLUSION: High antiproliferative daily inecalcitol dose has been safely used in combination with docetaxel and shows encouraging PSA response (≥30% PSA response: 85%; ≥50% PSA response: 76%). A randomized phase II study is planned.
Resumo:
Single vehicle run-off-road (ROR) crashes are the largest type of fatal passenger vehicle crash in the United States (NCHRP 500 2003). In Iowa, ROR crashes accounted for 36% of rural crashes and 9% of total crashes in 2006. Run-off-road crashes accounted for more than 61.8% of rural fatal crashes and 32.6% of total fatal crashes in Iowa in 2006. Paved shoulders are a potential countermeasure for ROR crashes. Several studies are available which have generally indicated that paved shoulders are effective in reducing crashes. However, the number of studies that quantify the benefits are limited. The research described in this report evaluates the effectiveness of paved shoulders. Model results indicated that covariate for speed limit was not significant at the 0.05 confidence level and was removed from the model. All other variables which resulted in the final model were significant at the 0.05 confidence level. The final model indicated that season of the year was significant in indicating expected number of total monthly crashes with a higher number of crashes occurring in the winter and fall than for spring and summer. The model also indicated that presence of rumble strips, paved shoulder width, unpaved shoulder width, and presence of a divided median were correlated with a decrease in crashes. The model also indicated that roadway sections with paved shoulders had fewer crashes in the after period as compared to both the before period and control sections. The actual impact of paved shoulders depends on several other covariates as indicated in the final model such as installation year and width of paved shoulders. However, comparing the expected number of total crashes before and after installation of paved shoulders for several scenarios indicated around a 4.6% reduction in the expected number of monthly crashes in the after period.
Resumo:
A section of US 52 between Dubuque and Luxemburg, Iowa, was listed in the top 5% of Iowa highways for severe crashes involving impaired drivers and single vehicle run-off-road crashes during 2001–2005, and several crashes have occurred on this roadway near the towns of Luxemburg, Holy Cross, and Rickardsville, Iowa, many on curves. Staff and officials from the Iowa Department of Transportation (Iowa DOT), Iowa State Patrol, Governor’s Traffic Safety Bureau, Federal Highway Administration, Center for Transportation Research and Education Dubuque County, and a retired fire chief met to review crash data and discuss potential safety improvements to U.S. Highway 52. This report outlines the findings and recommendations of the road safety audit team to address the safety concerns on this US 52 corridor and explains several mitigation strategies that the Iowa DOT District 6 Office has selected.