1000 resultados para SINGLE DISULFIDE BRIDGE
Resumo:
The distribution of single-particle strength in nuclear matter is calculated for a realistic nucleon-nucleon interaction. The influence of the short-range repulsion and the tensor component of the nuclear force on the spectral functions is to move approximately 13% of the total strength for all single-particle states beyond 100 MeV into the particle domain. This result is related to the abundantly observed quenching phenomena in nuclei which include the reduction of spectroscopic factors observed in (e,ep) reactions and the missing strength in low energy response functions.
Resumo:
s out to be more relevant than naively expected, is retained. Finally we analyze different aspects of the total cross section relevant to the measurement of new physics through the effective couplings. The above analysis also applies to top antiquark production in a straightforward way.
Resumo:
OBJECTIVES: To show the effectiveness of a brief group alcohol intervention. Aims of the intervention were to reduce the frequency of heavy drinking occasions, maximum number of drinks on an occasion and overall weekly consumption. METHODS: A cluster quasi-randomized control trial (intervention n = 338; control n = 330) among 16- to 18-year-old secondary school students in the Swiss Canton of Zürich. Groups homogeneous for heavy drinking occasions (5+/4+ drinks for men/women) consisted of those having medium risk (3-4) or high risk (5+) occasions in the past 30 days. Groups of 8-10 individuals received two 45-min sessions based on motivational interviewing techniques. RESULTS: Borderline significant beneficial effects (p < 0.10) on heavy drinking occasions and alcohol volume were found 6 months later for the medium-risk group only, but not for the high-risk group. None of the effects remained significant after Bonferroni corrections. CONCLUSIONS: Group intervention was ineffective for all at-risk users. The heaviest drinkers may need more intensive treatment. Alternative explanations were iatrogenic effects among the heaviest drinkers, assessment reactivity, or reduction of social desirability bias at follow-up through peer feedback.
Resumo:
Recent reports have indicated that 23.5 percent of the nation's highway bridges are structurally deficient and 17.7 percent are functionally obsolete. A significant number of these bridges are on the Iowa county road system. The objective of the investigation described in this report was to identify, review and evaluate replacement bridges currently being used by various counties in Iowa and surrounding states. Iowa county engineers, county engineers in neighboring states as well as private manufacturers of bridge components, and regional precad prestressed concrete manufacturers were contacted to determine the most common replacement bridge types being used. Depending upon the findings of the review, possible improvements and/or new replacement bridge systems were to be proposed. A questionnaire was developed and sent to county engineers in Iowa and several counties in surrounding states. The results of the questionnaire showed that the most common replacement bridges in Iowa are the continuous concrete slab and prestressed concrete bridges. The primary reason these types are used is because of the availability of standard designs and because of their ease of maintenance. Counties seldom construct these types of bridges using their own labor forces, but instead contract the work. However, county forces are used to construct steel stringer, precast reinforced concrete and timber bridges. In general, 69 percent of the counties indicate an ability and willingness to use their own forces to design and construct relatively short span bridges (i.e., 40 A or less) provided the construction procedures are relatively simple. Several unique replacement bridge types used in Iowa that are constructed by county forces are documented and presented in this report. Sufficient details are provided to allow county engineers to determine if some of these bridges could be used to resolve some of their own replacement bridge problems. Where possible, cost information has also been provided. Each of these bridge types were evaluated for various criteria (e.g., cost effectiveness, conformance to AASI-ITO standards, range of sizes, etc.) by a panel of four Iowa county engineers; a summary of this critique is included. After evaluating the questionnaire responses from the counties and evaluating the various bridge replacement concepts currently in use, one new bridge replacement concept and one modification of a current Iowa county bridge replacement concept were developed. Both of these concepts would utilize county labor forces.
Resumo:
In response to the mandate on Load and Resistance Factor Design (LRFD) implementations by the Federal Highway Administration (FHWA) on all new bridge projects initiated after October 1, 2007, the Iowa Highway Research Board (IHRB) sponsored these research projects to develop regional LRFD recommendations. The LRFD development was performed using the Iowa Department of Transportation (DOT) Pile Load Test database (PILOT). To increase the data points for LRFD development, develop LRFD recommendations for dynamic methods, and validate the results of LRFD calibration, 10 full-scale field tests on the most commonly used steel H-piles (e.g., HP 10 x 42) were conducted throughout Iowa. Detailed in situ soil investigations were carried out, push-in pressure cells were installed, and laboratory soil tests were performed. Pile responses during driving, at the end of driving (EOD), and at re-strikes were monitored using the Pile Driving Analyzer (PDA), following with the CAse Pile Wave Analysis Program (CAPWAP) analysis. The hammer blow counts were recorded for Wave Equation Analysis Program (WEAP) and dynamic formulas. Static load tests (SLTs) were performed and the pile capacities were determined based on the Davisson’s criteria. The extensive experimental research studies generated important data for analytical and computational investigations. The SLT measured load displacements were compared with the simulated results obtained using a model of the TZPILE program and using the modified borehole shear test method. Two analytical pile setup quantification methods, in terms of soil properties, were developed and validated. A new calibration procedure was developed to incorporate pile setup into LRFD.
Resumo:
The density of states of a Bose-condensed gas confined in a harmonic trap is investigated. The predictions of Bogoliubov theory are compared with those of Hartree-Fock theory and of the hydrodynamic model. We show that the Hartree-Fock scheme provides an excellent description of the excitation spectrum in a wide range of energy, revealing a major role played by single-particle excitations in these confined systems. The crossover from the hydrodynamic regime, holding at low energies, to the independent-particle regime is explicitly explored by studying the frequency of the surface mode as a function of their angular momentum. The applicability of the semiclassical approximation for the excited states is also discussed. We show that the semiclassical approach provides simple and accurate formulas for the density of states and the quantum depletion of the condensate.
Resumo:
One-hundred patients treated with curative radiotherapy (RT) ± chemotherapy (CT) for an anal canal carcinoma (T1-4N0-3M0) were retrospectively analyzed. Five- and 10-year local control (LC) rates were 73% and 67%, respectively. Acute and late G3-G4 toxicity rates were 32% and 12%, respectively. Two patients underwent a colostomy for a G4 anal toxicity. This study confirms the outcomes of RT ± CT in the treatment of anal canal cancer. Concomitant CT and LC statistically influenced Overall Survival and Colostomy-Free Survival. CT also statistically reduced the risk of nodal relapse. High rates of acute skin toxicity impose tailored volumes and techniques of irradiation.
Resumo:
Stress-strain trajectories associated with pseudoelastic behavior of a Cu¿19.4 Zn¿13.1 Al (at.%) single crystal at room temperature have been determined experimentally. For a constant cross-head speed the trajectories and the associated hysteresis behavior are perfectly reproducible; the trajectories exhibit memory properties, dependent only on the values of return points, where transformation direction is reverted. An adapted version of the Preisach model for hysteresis has been implemented to predict the observed trajectories, using a set of experimental first¿order reversal curves as input data. Explicit formulas have been derived giving all trajectories in terms of this data set, with no adjustable parameters. Comparison between experimental and calculated trajectories shows a much better agreement for descending than for ascending paths, an indication of a dissymmetry between the dissipation mechanisms operative in forward and reverse directions of martensitic transformation.
Resumo:
Under field conditions, thermal diffusivity can be estimated from soil temperature data but also from the properties of soil components together with their spatial organization. We aimed to determine soil thermal diffusivity from half-hourly temperature measurements in a Rhodic Kanhapludalf, using three calculation procedures (the amplitude ratio, phase lag and Seemann procedures), as well as from soil component properties, for a comparison of procedures and methods. To determine thermal conductivity for short wave periods (one day), the phase lag method was more reliable than the amplitude ratio or the Seemann method, especially in deeper layers, where temperature variations are small. The phase lag method resulted in coherent values of thermal diffusivity. The method using properties of single soil components with the values of thermal conductivity for sandstone and kaolinite resulted in thermal diffusivity values of the same order. In the observed water content range (0.26-0.34 m³ m-3), the average thermal diffusivity was 0.034 m² d-1 in the top layer (0.05-0.15 m) and 0.027 m² d-1 in the subsurface layer (0.15-0.30 m).
Resumo:
Convective flows of a small Prandtl number fluid contained in a two-dimensional cavity subject to a lateral thermal gradient are numerically studied by using different techniques. The aspect ratio (length to height) is kept at around 2. This value is found optimal to make the flow most unstable while keeping the basic single-roll structure. Two cases of thermal boundary conditions on the horizontal plates are considered: perfectly conducting and adiabatic. For increasing Rayleigh numbers we find a transition from steady flow to periodic oscillations through a supercritical Hopf bifurcation that maintains the centrosymmetry of the basic circulation. For a Rayleigh number of about ten times that of the Hopf bifurcation the system initiates a complex scenario of bifurcations. In the conductive case these include a quasiperiodic route to chaos. In the adiabatic one the dynamics is dominated by the interaction of two Neimark-Sacker bifurcations of the basic periodic solutions, leading to the stable coexistence of three incommensurate frequencies, and finally to chaos. In all cases, the complex time-dependent behavior does not break the basic, single-roll structure.