903 resultados para SILICATE CLAY NANOCOMPOSITES
Resumo:
Novel spherical three-dimensional (3D) dendritic gold-polypyrrole nanocomposites were successfully prepared in the presence of an amphiphilic p-toluene sulfonic acid (TSA) as dopant and surfactant via a self-assembly process which is based on the oxidation of pyrrole (Py) and the reduction of the chloroaurate ions, yielding PPy and Au(0) simultaneously. It was found that the probability of obtaining dendritic Au@PPy/TSA nanostructures depended on the concentration of TSA and the rate of addition of the oxidant (HAuCl4), It was also proposed that the supramolecular micelles formed by Py and TSA play the role of a 'soft template' to produce the dendritic Au@PPy/TSA nanocomposites.
Resumo:
The catalytic properties of silver nanoparticles supported on silica and the relation between catalytic activity of silver particles and the support (silica) size are investigated in the present article. The silver nanoparticles with 4 nm diameters were synthesized and were attached to silica spheres with sizes of 40, 78, 105 nm, respectively. The reduction of Rhodamine 6G (R6G) by NaBH4 was designed by using the SiO2/Ag core-shell nanocomposites as catalysts. The experimental results demonstrated that the catalytic activity of silica/silver nanoparticles depends on not only the concentration of catalysts (silver) but also the support silica size. Silver particles supported on small SiO2 spheres (similar to 40 nm) show high catalytic activity. Moreover, by making a comparison between the UV-vis spectra of the catalyst before and after the catalytic reaction, we found that the position of surface plasma resonance (SPR) peak of Ag nanoparticles changes little. The above results suggested that the size and morphology of silver particles were probably kept unchanged after the reduction of R6G and also implied that the catalytic activity of silver particles was hardly lost during the catalytic reaction.
Resumo:
Magnetic and conductive NiZn ferrite-polyaniline nanocomposites with novel core-shell structure have been fabricated by microemulsion process. The samples were characterized by XRD, TEM, SEM, IR, UV-vis, voltage/current detector and SQUID magnetometry. The core-shell structure of nanocomposites was observed by TEM. The changes of the magnetic and conductive properties after polyaniline coating were investigated.
Resumo:
A series of organically modified clays (OMCs) with a surfactant loading range from 0.625 to 2.5 times the cation exchange capacity (CEC) were melt-mixed with maleated polypropylene (PPMA). Wide-angle X-ray diffraction and transmission electron microscopy results of these narrocomposites show that dispersion of clays becomes unfavorable in the PPMA matrix during melt intercalation as the surfactant loading increases in the process of modifying clays, though larger interlayer distances are obtained in their corresponding OMCs. It is even important that clays uniformly disperse at the nanoscale level in the PPMA matrix when the surfactant loadings are below the CEC, which implies that incomplete exchange of inorganic cations in the process of modifying clay benefits the dispersion of clays in the PPMA matrix.
Resumo:
The covalency of each bond in divalent europium doped hosts CaSiO3, SrSiO3, BaSiO3, Sr2LiSiO4F, Ba5SiO4Cl6 and Ba5SiO4Br6 were calculated by using the complicate crystal chemical bond theory. The relationship between the Stokes shift and the bond properties of Eu2+ in these crystals was discussed. The result demonstrates that, in the isostructural crystals that being doped with Eu2+, there is a more precise connection between the magnitude of Stokes shift and the mean covalency of the dopant site.
Resumo:
Polyethylene (PE)/montmorillonite (MMT) nanocomposites were prepared by in situ coordination polymerization using a MMT/MgCl2/TiCl4 catalyst activated by AI(Et),. The catalyst was prepared by first diffusing MgCl2 into the swollen MMT layers, followed by loading TiCl4 on the inner/outer layer surfaces of MMT where MgCl2 was already deposited. The intercalation of MMT layers by MgCl2 and TiCl, was demonstrated by the enlarged interlayer spacing determined by WAXD. The nanoscale dispersion of MMT layers in the polyethylene matrix was characterized by WAXD and TEM. As a consequence, the crystallinity of the nanocomposite decreased sharply, whereas the tensile strength was significantly improved compared to that of virgin polyethylene of comparable molecular weight. The confinement of the nanodispersed MMT layers to molecular chain and the strong interaction between the nanoscale MMT layers and the resin matrix were thought to account for the decrease of crystallinity and the remarkable enhancement of strength.
Resumo:
Rare-earth (Eu3+, Tb3+)-doped Ca2Y8(SiO4)(6)O-2 luminescent thin films were dip-coated on silicon and quartz glass substrates through a sol-gel route. X-ray diffraction (XRD), scanning electron microscopy (SEM) and luminescence excitation and emission spectra as well as luminescence decays were used to characterize the resultant films. The results of XRD reveal that these films remain amorphous below 700 degreesC, begin to crystallize at 800 degreesC, and crystallize completely around 1000 degreesC with an oxyapatite structure. The grain structure of the film can be seen clearly from SEM micrographs, where particles with various shape and average size of 250 nm can be resolved. The Eu3+ and Tb3+ ions show their characteristic red (D-5(0)-F-7(2)) and green (D-5(4)-F-7(5)) emission in the films with a quenching concentration of 10 and 6 mol% (of Y3+), respectively. The lifetime of Eu-3divided by increases with the heat treatment temperature front 700 to 1100 degreesC.
Resumo:
Eu3+-activated calcium silicate (CaO-SiO2:Eu3+) luminescent films were prepared by the sol-gel method. The structural evolution of the film was studied by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), and the luminescence properties of the phosphor films were investigated as a function of heat treatment temperature. The XRD study indicates that a kilchoanite phase forms in the film sintered at 800 degreesC, which is different from that in gel powder treated under the same conditions. The SEM results show that the film thickness decreases and the particles in the film become smaller with increasing heat treatment temperature. The CaO-SiO2:Eu film shows the characteristic emission of Eu3+ under UV excitation, with the Eu3+ D-5(0)-->F-7(2) band (616 nm) being the most prominent. A large difference in the Eu3+ lifetime is observed between the film samples treated at 500 and 700 degreesC (or above). Concentration quenching occurs when the Eu3+ doping concentration is above 6 mol% of Ca2+ in the film.
Resumo:
Hybrid materials incorporating poly(ethylene glycol) (PEG) with tetraethoxysilane (TEOS) via a sol-gel process were studied for a wide range of compositions of PEG by DSC and high resolution solid-state C-13- and Si-29-NMR spectroscopy. The results indicate that the microstructure of the hybrid materials and the crystallization behavior of PEG in hybrids strongly depend on the relative content of PEG. With an increasing content of PEG, the microstructure of hybrid materials changes a lot, from intimate mixing to macrophase separation. It is found that the glass transition temperatures (T-g) (around 373 K) of PEG homogeneously embedded in a silica network are much higher than that (about 223 K) of pure PEG and also much higher in melting temperatures T-m (around 323 K) than PEG crystallites in heterogeneous hybrids. Meanwhile, the lower the PEG content, the more perfect the silica network, and the higher the T-g of PEG embedded in hybrids. An extended-chain structure of PEG was supposed to be responsible for the unusually high T-g of PEG. Homogeneous PEG-TEOS hybrids on a molecular level can be obtained provided that the PEG. content in the hybrids is less than 30% by weight. (C) 1998 John Wiley & Sons, Inc.
Resumo:
The Pb2+ luminescence in a series of silicate oxyapatites Me(2)(Y, Gd)(8)(SiO4)(6)O-2, Me(4)Y(6)(SiO4)(6)O (Me = Mg: Ca, Sr) is reported and discussed in relation to the crystal structure. The maximum wavelengths of the excitation (S-1(0)-P-3(1)) and emission (P-3(1)-S-1(0)) bands of Pb2+ are independent of the Mc:Y ratio (2:8 or 4:6) but they have lower energies in MgY-oxyapatites than in CaY- and SrY-oxyapatites. The Stokes shift of Pb2+ luminescence amounts to 11 100 to 11 400 cm(-1): which does not depend strongly on the host composition. There exists a mutual energy transfer between Pb2+ and Gd3+ in Sr2Gd8(SiO4)(6)O-2. At last, the dependence of the energy transfer efficiency of Pb2+-Sm3+, Tb3+: Dy3+ in Sr-2(La: Gd)(8)(SiO4)(6)O-2 and Ca-2(Y, Gd)(8)(SiO4)(6)O-2 on their doping concentrations was studied in more detail.
Resumo:
Clay fractions in the non-calcareous surface sediments from the eastern Pacific were analyzed for clay minerals, REE and Nd-143/Nd-144. Montmorillonite/illite ratio (M/I ratio), total REE contents (Sigma REE), LREE/HREE ratio and cerium anomaly (delta Ce) may effectively indicate the genesis of clay minerals. Clay fractions with M/I ratio > 1, delta Ce < 0.85, Sigma REE > 400 mu g/g, LREE/HREE ratio approximate to 4, and REE patterns similar to those of pelagic sediments are terrigenous and autogenetic mixed clay fractions and contain more autogenetic montmorillonite. Clay fractions with M/I ratio < 1, delta Ce=0.86 to 1.5, Sigma REE=200 to 350 mu g/g, LREE/HREE ratio approximate to 6 and REE distribution patterns similar to that of China loess are identified as terrigenous clay fraction. The Nd-143/Nd-144 ratios or epsilon(Nd) values of clay fractions inherit the features of terrigenous sources of clay minerals. Clay fractions are divided into 4 types according to epsilon(Nd) values. Terrigenous clay minerals of type I with the eNd values of -8 to -6 originate mainly from North American fluvial deposits. Those of type 11 with the epsilon(Nd) Values of -9 to -7 are mainly from the East Asia and North American fluvial deposits. Those of type III with epsilon(Nd) values of -6 to -3 could come from the central and eastern Pacific volcanic islands. Those of type IV with epsilon(Nd) values of -13 to -12 may be from East Asia eolian. The terrigenous and autogenetic mixed clay fractions show patchy distributions, indicating that there are volcanic or hot-spot activities in the eastern Pacific plate, while the terrigenous clay fractions cover a large part of the study area, proving that the terrigenous clay minerals are dominant in the eastern Pacific.
Resumo:
To better understand the characteristics of the clay minerals in the southern Yellow Sea, the X-ray quantitative determinations have been carried out for the surface samples obtained from the Yellow Sea. With newly compiled clay mineral synoptic maps, the depositional processes were described for four main clay minerals (illite, chlorite, kaolinite and smectite). The analysis shows that most clay minerals are of terrigenous source with the Huanghe River acting as the major sediment supplier. Besides, the source of muddy sediments in the Yellow Sea was also discussed. As for the central Yellow Sea mud (CYSM), the sediments in its northern part mainly come from the Huanghe River, and those in the rest are of multi-origin. Very similarly, a large amount of sediments in the northern part of the southeastern Yellow Sea Mud (SEYSM) derive from the Keum River and Yeong-san River, while those in the southern part are of multi-origin.
Resumo:
The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.