943 resultados para Russia--Maps
Resumo:
Peat plateaus are widespread at high northern latitudes and are important soil organic carbon reservoirs. A warming climate can cause either increased ground subsidence (thermokarst) resulting in lake formation or increased drainage as the permafrost thaws. A better understanding of spatiotemporal variations in these landforms in relation to climate change is important for predicting the future thawing permafrost carbon feedback. In this study, dynamics in thermokarst lake extent during the last 35-50 years has been quantified through time series analysis of aerial photographs and high-resolution satellite images (IKONOS/QuickBird) in three peat plateau complexes, spread out across the northern circumpolar region along a climatic and permafrost gradient. From the mid-1970s until the mid-2000s there has been an increase in mean annual air temperature, winter precipitation, and ground temperature in all three study areas. The two peat plateaus located in the continuous and discontinuous permafrost zones, respectively, where mean annual air temperatures are below -5°C and ground temperatures are -2°C or colder, have experienced small changes in thermokarst lake extent. In the peat plateau located in the sporadic permafrost zone where the mean annual air temperature is around -3°C, and the ground temperature is close to 0°C, lake drainage and infilling with fen vegetation has been extensive and many new thermokarst lakes have formed. In a future progressively warmer and wetter climate permafrost degradation can cause significant impacts on landscape composition and greenhouse gas exchange also in areas with extensive peat plateaus, which presently still experience stable permafrost conditions.
Resumo:
There are about 30 species of planktonic Foraminifera, as contrasted with the more than 4200 benthic species in the oceans of the world. Most of the planktonic species belong to the families Globigerinidae and Globorotaliidae. Of the 30 species, 9 occur in Antarctic and Subantarctic waters; however, none of these cold-water species are restricted to the Southern Ocean, except possibly the newly recognized Globorotalia cavernula (Be, 1967b). These species are distributed in broad zones of similar temperature in both the Northern and Southern Hemispheres. Hence, it is not possible to refer to these species as endemic to the Antarctic or Subantarctic, although some of them do appear in very high concentrations of 10 specimens/m**3 or more in the Antarctic regions. The plankton samples upon which the accompanying maps are based were collected between 1960 and 1965 on the research vessels Eltanin of the National Science Foundation (U.S. Antarctic Research Program), and Vema and Conrad of the Lamont Geological Observatory. All surface (0 m to 10 m) and vertical (0 m to 300 m) tows were obtained with plankton nets of uniform mesh size and material (NITEX202 = 202 µm mesh-aperture width) and were provided with flowmeters for quantitative readings of amounts of water filtered.
Resumo:
Based on data from R/V Sonne multibeam sonar surveys in 2005 a high resolution bathymetry was generated for the Mozambique Basin. The area covers approx. 466,475 sqkm. The mapping area is divided into four sheets with boundaries (west/east/south/north): Sheet I (north-west), 37:00/39:45/-24:00/-20:20; Sheet II (north-east), 39:45/42:30/-24:00/-20:20; Sheet III (south-west), 37:00/39:45/-27:40/-24:00; Sheet IV (south-east), 39:45/42:30/-27:40/-24:00. Basic outcome of the investigation are Digital Terrain Models (DTM), one for each sheet with 0.05 arcmin (~91 meter) grid spacing and one for the entire area with 0.1 arcmin grid spacing. The DTM's were utilized for contouring and generating maps. Moreover the measured bathymetry was combined and compared with GEBCO bathymetry and predicted bathymetry, derived from altimeter satellites. The provided maps have a paper size of DIN A0 (1188.9 x 841 mm).
Resumo:
Photogrammetric surveys have been made and maps drawn of a number of glaciers in the eastern Alps, among them the Waxeggkees in the Zillertal Alps of Tyrol, at approximately ten-year intervals since 1950. Terrestrial photogrammetry was used for the pictures taken in 1950, 1960, 1980, 1989 and 2000, while aerial photogrammetry was employed for the 1969 photo. These maps were subsequently used to calculate the changes in area, elevation and volume for elevational zones of 50 m. The numeric values are given in two tables. The illustration of surface changes in Waxeggkees is continued cartographically on 5 map sheets at the scale of 1 : 15.000 and a vertical interval of the contour lines of 50 m. Changes in glacier area are marked in light red to indicate a decrease in area, and in light blue for an increase. Changes in elevation can only be indicated indirectly, namely in the form of vertical interval bands, referring to the surface areas that arise due to the relocation of the contour lines, resulting from an elevational change. Decrease in elevation is indicated in red, increase in blue, on 100 m contour lines.
Resumo:
The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003-2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.
Resumo:
This collection prepared to IX Congress of INQUA containes 25 articles concerning general and regional problems of Pleistocene. The chronological scale of the Late Pliocene and Pleistocene, climatical cycles and methods of the absolute dating are considered. Some data obtained by means ef paleomagnetic, thermoluminescence and radiocarbon methods at several point sections (Likhvin, Rostov-Jarosiavsky, Priasovje, Ob-garm, Chagan, Pryobskoje Plateau, Lower Volga) are given.
Resumo:
Distribution patterns of the most important pollen types from southern European and northwest African source areas for the 18,000 years B.P. time slice are reconstructed from pollen records of 14 well-dated deep-sea cores located between 37° and 9°N and compared with the modern pollen distribution in this area. It is concluded that the belt with maximum African Easterly Jet transport did not shift latitudinally during the last glacial-interglacial transition but remained at about 20°N. Furthermore, it is substantiated that the trade winds did not shift latitudinally during the last glacial-interglacial transition. This evidence is not compatible with an atmospheric circulation model that assumes a zone of surface westerlies in the northern part of northwest Africa. Trade winds during glacial episodes did, however, intensify, especially from about 36° to 24° N.