975 resultados para Root surface area
Resumo:
This study focuses on addressing the propagation front movement in a co-current downdraft gasification system. A detailed single particle modeling analysis extended to the packed bed reactor is used to compare with the experimental measurement as well those available in the literature. This model for biomass gasification systems considered pyrolysis process, gas phase volatile combustion, and heterogeneous char reactions along with gas phase reactions in the packed bed. The pyrolysis kinetics has a critical influence on the gasification process. The propagation front has been shown to increase with air mass flux, attains a peak and then decreases with further increase in air mass flux and finally approaches negative propagation rate. This indicates that front is receding, or no upward movement() bra her it is moving downward towards the char bed. The propagation rate correlates with mass flux as (m) over dot `'(0.883) during the increasing regimes of the front movement The study clearly identifies that bed movement is an important parameter for consideration in a co-current configuration towards establishing the effective bed movement. The study also highlights the importance of surface area to volume ratio of the particles in the packed bed and its influence on the volatile generation. Finally, the gas composition for air gasification under various air mass fluxes is compared with the experimental results. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
We report a facile synthesis of three-dimensional (3D) nanodendrites of Pd nanoparticles (NPs) and nitrogen-doped carbon NPs (N-CNPs) by electroless deposition of Pd2+ ions. N-CNPs being an electron-enriched material act as a reducing agent. Moreover, the availability of a variety of nitrogen species in N-CNPs promotes the open arm structure as well as stabilizes the oriented 3D assembly of primary Pd NPs. The dendrites exhibit superior catalytic activity for methanol (0.5 M) oxidation in alkaline media (1 M NaOH) which is ascribed to the large electrochemical active surface area and the enhanced mass activity with repeated use. Further mass activity improvement has been realized after acid-treatment of dendrites which is attributed to the increment in the -OH group. The dendrites show higher mass activity (J(f) similar to 653 A g(-1)) in comparison with a commercial Pt-carbon/Pd-carbon (Pt-C/Pd-C) catalyst (J(f) similar to 46 and 163 A g(-1), respectively), better operational stability, superior CO tolerance with I-f/I-b (similar to 3.7) over a commercial Pt-C/Pd-C catalyst (I-f/I-b similar to 1.6 and 1.75, respectively) and may serve as a promising alternative to commercial Pt-C catalysts for anode application in alkaline fuel cells. To ensure the adaptability of our 3D-nanodendrites for other catalytic activities, we studied 4-nitrophenol reduction at room temperature. The 3D-nanodendrites show excellent catalytic activity toward 4-nitrophenol reduction, as well.
Resumo:
Stiction in microelectromechanical systems (MEMS) has been a major failure mode ever since the advent of surface micromachining in the 80s of the last century due to large surface-area-to-volume ratio. Even now when solutions to this problem are emerging, such as self-assembled monolayer (SAM) and other measures, stiction remains one of the most catastrophic failure modes in MEMS. A review is presented in this paper on stiction and anti-stiction in MEMS and nanoelectromechanical systems (NEMS). First, some new experimental observations of stiction in radio frequency (RF) MEMS switch and micromachined accelerometers are presented. Second, some criteria for stiction of microstructures in MEMS and NEMS due to surface forces (such as capillary, electrostatic, van der Waals, Casimir forces, etc.) are reviewed. The influence of surface roughness and environmental conditions (relative humidity and temperature) on stiction are also discussed. As hydrophobic films, the self-assembled monolayers (SAMs) turn out able to prevent release-related stiction effectively. The anti-stiction of SAMs in MEMS is reviewed in the last part.
A quantum dot sensitized solar cell based on vertically aligned carbon nanotube templated ZnO arrays
Resumo:
We report on a quantum dot sensitized solar cell (QDSSC) based on ZnO nanorod coated vertically aligned carbon nanotubes (VACNTs). Electrochemical impedance spectroscopy shows that the electron lifetime for the device based on VACNT/ZnO/CdSe is longer than that for a device based on ZnO/CdSe, indicating that the charge recombination at the interface is reduced by the presence of the VACNTs. Due to the increased surface area and longer electron lifetime, a power conversion efficiency of 1.46% is achieved for the VACNT/ZnO/CdSe devices under an illumination of one Sun (AM 1.5G, 100 mW/cm2). © 2010 Elsevier B.V.
Resumo:
The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.
Resumo:
The authors report the growth of carbon nanowalls in freestanding, three-dimensional aggregates by microwave plasma-enhanced chemical vapor deposition. Carbon nanowalls extrude from plasma sites into three-dimensional space. The growth is catalyst-free and not limited by nucleating surfaces. The growth mechanism is discussed and compared with similar carbon nanomaterials. High surface area of as-grown carbon nanowalls indicates a potential for electrochemical applications. Field emission measurements show a low field turn-on and long-term stability. The results establish a scalable production method and possible applications using field emission or high surface area. © 2007 American Institute of Physics.
Resumo:
In this work, the formation of soot in a Direct Injection Spark Ignition (DISI) engine is simulated using the Stochastic Reactor Model (SRM) engine code. Volume change, convective heat transfer, turbulent mixing, direct injection and flame propagation are accounted for. In order to simulate flame propagation, the cylinder is divided into an unburned, entrained and burned zone, with the rate of entrainment being governed by empirical equations but combustion modelled with chemical kinetics. The model contains a detailed chemical mechanism as well as a highly detailed soot formation model, however computation times are relatively short. The soot model provides information on the morphology and chemical composition of soot aggregates along with bulk quantities, including soot mass, number density, volume fraction and surface area. The model is first calibrated by simulating experimental data from a Gasoline Direct Injection (GDI) Spark Ignition (SI) engine. The model is then used to simulate experimental data from the literature, where the numbers, sizes and derived mass particulate emissions from a 1.83 L, 4-cylinder, 4 valve production DISI engine were examined. Experimental results from different injection and spark timings are compared with the model and the qualitative trends in aggregate size distribution and emissions match the exhaust gas measurements well. © 2010 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
Resumo:
Porous Zr-based bulk metallic glass (PMG) with unidirectional opening pores is prepared by electrochemical etching of tungsten wires of the W/bulk metallic glass (BMG) composites. The porosity and pore size can be controlled by adjusting the tungsten wires. The PMG showed no measurable loss in thermal stability as compared to the monolithic Zr-based BMG by water quenching and is more ductile and softer than the pore-free counterpart. The specific surface area of the PMGs is calculated to be 0.65, 3.96, and 10.54 m(2)/kg for 20, 60, and 80 vol % porosity, respectively. (c) 2007 The Electrochemical Society.
Resumo:
Heat transfer from plasma to a nonspherical partical in the free-molecular regime is studied in the present paper under thin plasma sheath condition. Analytical expressions for the floating potential charge and heat fluxes of an ellipsoid particle of revolution are derived and curves are given for key parameters for arbitrary plasma flow direction. On the basis of these results, an equivalent sphere with the same surface area as the nonspherical particle is suggested to be used for calculating the total heat flux of nonspherical particle in engineering application with acceptable accuracy. Furthermore, the effects of particle rotation, which occurs in most aerosol systems, on the heat transfer are also discussed.
Resumo:
A limnological and fish survey program was developed on 112 lakes and reservoirs of Argentina during the summers of 1984 to 1987. Bathymetric surveys with a SIMRAD Skipper 411 model echosounder and line and lead were conducted on more than 40 lakes. This report presents bathymetric maps for seventeen lakes and reservoirs situated in Patagonian Andes Region and Patagonian Plateau betweem 38°53'S and 45°30'S. The bathymetric maps for two reservoirs were made from topographic maps before impoundment. Hypsographic and depth-area curves, and some morphometric parameters are presented for twenty one Patagonian lakes. Mean depth ranged from 2.0 to 111 m. The deepest lakes are situated in Patagonian Andes Region. Colhue Huapi Lake on Patagonian Plateau, is very shallow, having a mean depth of 2.0 m and being 810 km. in surface area.
Resumo:
A study of aquatic plant biomass within Cayuga Lake, New York spans twelve years from 1987-1998. The exotic Eurasian watermilfoil ( Myriophyllum spicatum L.) decreased in the northwest end of the lake from 55% of the total biomass in 1987 to 0.4% in 1998 and within the southwest end from 50% in 1987 to 11% in 1998. Concurrent with the watermilfoil decline was the resurgence of native species of submersed macrophytes. During this time we recorded for the first time in Cayuga Lake two herbivorous insect species: the aquatic moth Acentria ephemerella , first observed in 1991, and the aquatic weevil Euhrychiopsis lecontei , first found in 1996 . Densities of Acentria in southwest Cayuga Lake averaged 1.04 individuals per apical meristem of Eurasian watermilfoil for the three-year period 1996-1998. These same meristems had Euhrychiopsis densities on average of only 0.02 individuals per apical meristem over the same three-year period. A comparison of herbivore densities and lake sizes from five lakes in 1997 shows that Acentria densities correlate positively with lake surface area and mean depth, while Euhrychiopsis densities correlate negatively with lake surface area and mean depth. In these five lakes, Acentria densities correlate negatively with percent composition and dry mass of watermilfoil. However, Euhrychiopsis densities correlate positively with percent composition and dry mass of watermilfoil. Finally, Acentria densities correlate negatively with Euhrychiopsis densities suggesting interspecific competition.
Resumo:
This regional atlas summarizes and illustrates the distribution and abundance patterns of fish eggs and larvae of 102 taxa within 34 families found in the Northeast Pacific Ocean including the Bering Sea, Gulf of Alaska, and U.S. west coast ecosystems. Data were collected over a 20+ year period (1972–1996) by the Recruitment Processes Program of the Alaska Fisheries Science Center (AFSC). Ichthyoplankton catch records used in this atlas were generated from 11,379 tows taken during 100 cruises. For each taxon, general life history data are briefly summarized from the literature. Published information on distribution patterns of eggs and larvae are reviewed for the study area. Data from AFSC ichthyoplankton collections were combined to produce an average spatial distribution for each taxon. These data were also used to estimate mean abundance and percent occurrence by year and month, and relative abundance by larval length and season. Abundance from each tow was measured as catch per 10 m2 surface area. A larval distribution and abundance map was produced with a geographic information system using ArcInfo software. For taxa with identifiable pelagic eggs, distribution maps showing presence or absence of eggs are presented. Presence or absence of adults in the study area is mapped based on recent literature and data from AFSC groundfish surveys. Distributional records for adults and early life history stages revealed several new range extensions. (PDF file contains 288 pages.)
Resumo:
Quarterly ichthyoplankton sampling was conducted at 16 estuarine and 24 inshore stations along the Florida Everglades from May 1971 to February 1972. The area is one of the most pristine along lhe Florida coast. The survey provided the first comprehensive information on seasonal occurrence, abundance (under 10 m' of surface area), and distribution of fish eggs and larvae in this area. A total of 209,462 fish eggs and 78,865 larvae was collected. Eggs were identified only as fish eggs, but among the larvae, 37 families, 47 genera, and 37 species were identified. Abundance of eggs and larvae, and diversity of larvae, were greatest in the inshore zone. The 10 most abundant fish families which together made up 90.7% of all larvae from the study area were, in descending order of abundance: Clupeidae, Engraulidae, Gobiidae, Sciaenidae, Carangidae, Pomadasyidae, Cynoglossidae, Gerreidae, Triglidae, and Soleidae. Clupeidae, Engraulidae, and Gobiidae made up 59.9% of all larvae. The inshore zone (to a depth of about 10 m) was a spawning ground and nursery for many fishes important to fisheries. The catch of small larvae (<>3.5 mm SL) indicated that most fishes identified from the 10 most abundant families spawned throughout the inshore zone at depths of <> 10 m, but Orthopristis chrysoptera, Gerreidae, and Prionotus spp. spawned at depths > 10 m, with offshore to inshore (eastward) larval transport. Salinity was one of several environmental factors that probably limited the numbers of eggs and larvae in the estuarine zone. Abundance of eggs and larvae at inshore stations was usually as great as, and sometimes greater than, the abundance of eggs and larvae at offshore stations (due west of the Everglades). (PDF file contains 81 pages.)
Resumo:
This document is part of a series of 5 technical manuals produced by the Challenge Program Project CP34 “Improved fisheries productivity and management in tropical reservoirs”. The reservoirs of India have a combined surface area of 3.25 million hectares (ha), mostly in the tropical zone, which makes them the country¡¯s most important inland water resource, with huge untapped potential. The prime objective of cage culture discussed here is to rear fingerlings measuring >100 millimetres (mm) in length, especially carp, for stocking reservoirs. The manual discusses various aspects of cage culture from site selection to its economic benefits. (PDF contains 27 pages)
Resumo:
ENGLISH: The Inter-American Tropical Tuna Commission has maintained a hydro-biological station in the Gulf of Panama located at 8°45'N, 79°23'W in connection with their ecological investigation of the anchoveta (Cetengraulis mysticetus), a tuna baitfish (see Peterson, 1961, for references) . The depth is approximately 42 meters at mean low water at this station. Routine hydrographic and biological observations have been made (Schaefer, Bishop and Howard, 1958; Schaefer and Bishop, 1958; Forsbergh, 1963), including the collection of quantitative phytoplankton samples from November 1954 through May 1957 (Smayda, 1959; unpublished). The seasonal and regional variations in phytoplankton growth in the Gulf of Panama have also been investigated (Smayda, 1963). The relationships existing between C1 4 assimilation as determined by 24 hour in situ experiments and diatom standing crop at 10 meters when expressed as cell numbers, cell volume, cell surface area and cell plasma volume have been assessed for 30 observations made between November 1954 and May 1957 at 8°45'N, 79°23'W. The average cell volume and cell surface area characteristics for 110 diatom species and varieties are presented. SPANISH: Las relaciones existentes entre la asimilación del C14 , determinadas después de 24 horas de experimentos in situ, y la cosecha estable de las diatomeas a 10 metros, expresando el número de células, volumen celular, área de la superficie celular y volumen del plasma celular, han sido determinadas por medio de 30 observaciones hechas entre noviembre de 1954 y mayo de 1957, a los 8°45'N, 79°23'W. Se presenta, para 110 especies y variedades de diatomeas, el promedio de las características del volumen celular y del área de la superficie celular. (PDF contains 67 pages.)