970 resultados para Rms1 Mutant
Resumo:
EcoP1 modification methylase was radioactively labeled when incubated with S-adenosyl-L-[methyl-3H]methionine in the presence of ultraviolet light. Crosslinking of the enzyme as detected by electrophoresis on sodium dodecyl sulfate-polyacrylamide gel followed by fluorography and autoradiography, was shown to be specific by a number of criteria. More importantly, EcoP1 modification methylase was also radioactively labeled with S-adenosyl-L-[carboxyl-14C]methionine demonstrating that labeling involved binding of the entire AdoMet molecule rather than methylation of the protein. Further, c2 EcoP1 mutant DNA modification methylases which show negligible or very little methylation activity, correspondingly formed a weak or no adduct upon crosslinking. These results suggest that photolabeling of EcoP1 DNA modification methylase occurs at the AdoMet binding site.
Resumo:
Earlier we have demonstrated the presence of internal ribosome entry site (IRES) within tumor suppressor p53 mRNA. Here we have mapped the putative secondary structure of p53-IRES RNA using information from chemical probing and nuclease mapping experiments. Additionally, the secondary structure of the IRES element of the wild-type RNA was compared with cancer-derived silent mutant p53 RNAs. These mutations might result in the conformational alterations of p53-IRES RNAs. The results also indicate decreased IRES activities of the mutants as compared to wild-type RNA. Further, it was observed that some of the cytoplasmic trans-acting factors, critical for enhancing IRES function, were unable to bind mutant RNAs as efficiently as to wild-type. Our results suggest that hnRNP C1/C2 binds to p53-IRES and siRNA mediated partial silencing of hnRNP C1/C2 showed appreciable decrease in IRES function and consequent decrease in the level of the corresponding p53 isoform. Interestingly mutant p53 IRES showed lesser binding with hnRNP C1/C2 protein. Finally, upon doxorubicin treatment, the mutant RNAs were unable to show enhanced p53 synthesis to similar extent compared to wild type. Taken together, these observations suggest that mutations occurring in the p53 IRES might have profound implications for de-regulation of its expression and activity.
Resumo:
Vaccines against Neisseria meningitidis group C are based on its alpha-2,9-linked polysialic acid capsular polysaccharide. This polysialic acid expressed on the surface of N. meningitidis and in the absence of specific antibody serves to evade host defense mechanisms. The polysialyltransferase (PST) that forms the group C polysialic acid (NmC PST) is located in the cytoplasmic membrane. Until recently, detailed characterization of bacterial polysialyltransferases has been hampered by a lack of availability of soluble enzyme preparations. We have constructed chimeras of the group C polysialyltransferase that catalyzes the formation alpha-2,9-polysialic acid as a soluble enzyme. We used site-directed mutagenesis to determine the region of the enzyme necessary for synthesis of the alpha-2,9 linkage. A chimera of NmB and NmC PSTs containing only amino acids 1 to 107 of the NmB polysialyltransferase catalyzed the synthesis of alpha-2,8-polysialic acid. The NmC polysialyltransferase requires an exogenous acceptor for catalytic activity. While it requires a minimum of a disialylated oligosaccharide to catalyze transfer, it can form high-molecular-weight alpha-2,9-polysialic acid in a nonprocessive fashion when initiated with an alpha-2,8-polysialic acid acceptor. De novo synthesis in vivo requires an endogenous acceptor. We attempted to reconstitute de novo activity of the soluble group C polysialyltransferase with membrane components. We found that an acapsular mutant with a defect in the polysialyltransferase produces outer membrane vesicles containing an acceptor for the alpha-2,9-polysialyltransferase. This acceptor is an amphipathic molecule and can be elongated to produce polysialic acid that is reactive with group C-specific antibody.
Resumo:
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex. We have substituted the wild-type residue at position 13, methionine (Met), with norleucine (Nle), where the only covalent change is the replacement of the sulfur atom with a methylene group. The thermodynamic parameters associated with the binding of this variant to S-protein, determined by titration calorimetry in the temperature range 10-40 degrees C, are reported and compared to values previously reported [Varadarajan, R., Connelly, P. R., Sturtevant, J. M., & Richards, F. M. (1992) Biochemistry 31, 1421-1426] for other position 13 analogs. The differences in the free energy and enthalpy of binding between the Met and Nle peptides are 0.6 and 7.9 kcal/mol at 25 degrees C, respectively. These differences are slightly larger than, but comparable to, the differences in the values for the Met/Ile and Met/Leu pairs. The structure of the mutant complex was determined to 1.85 Angstrom resolution and refined to an R-factor of 17.4% The structures of mutant and wild-type complexes are practically identical although the Nle side chain has a significantly higher average B-factor than the corresponding Met side chain. In contrast, the B-factors of the atoms of the cage of residues surrounding position 13 are all somewhat lower in the Nle variant than in the Met wild-type. Thus, the large differences in the binding enthalpy appear to reside entirely in the difference in chemical properties or dynamic behavior of the -S- and -CH2- groups and not in differences in the geometry of the side chains or the internal cavity surface. In addition, a novel method of obtaining protein stability data by means of isothermal titration calorimetry is introduced.
Resumo:
EcoP15I DNA methyltransferase recognizes the sequence 5'-CAGCAG-3' and transfers a methyl group to N-6 of the second adenine residue in the recognition sequence. All N-6 adenine methyltransferases contain two highly conserved sequences, FxGxG (motif I), postulated to form part of the S-adenosyl-L-methionine binding site and (D/N/S)PP(Y/F) (motif IV) involved in catalysis. We have altered the second glycine residue in motif I to arginine and serine, and substituted tyrosine in motif IV with tryptophan in EcoP15I DNA methyltransferase, using site-directed mutagenesis. The mutant enzymes were overexpressed, purified and characterized by biochemical methods. The mutations in motif I completely abolished AdoMet binding but left target DNA recognition unaltered. Although the mutation in motif IV resulted in loss of enzyme activity, we observed enhanced crosslinking of S-adenosyl-L-methionine and DNA. This implies that DNA and AdoMet binding sites are close to motif IV. Taken together, these results reinforce the importance of motif I in AdoMet binding and motif IV in catalysis. Additionally, limited proteolysis and UV crosslinking experiments with EcoP15I DNA methyltransferase imply that DNA binds in a cleft formed by two domains in the protein. Methylation protection analysis provides evidence for the fact that EcoP15I DNA MTase makes contacts in the major groove of its substrate DNA. Interestingly, hypermethylation of the guanine residue next to the target adenine residue indicates that the protein probably flips out the target adenine residue. (C) 1996 Academic Press Limited
Resumo:
In attempts to convert an elongator tRNA to an initiator tRNA, we previously generated a mutant elongator methionine tRNA carrying an anticodon sequence change from CAU to CUA along with the two features important for activity of Escherichia coli initiator tRNA in initiation. This mutant tRNA (Mi:2 tRNA) was active in initiation in vivo but only when aminoacylated with methionine by overproduction of methionyl-tRNA synthetase. Here we show that the Mi:2 tRNA is normally aminoacylated in vivo with lysine and that the tRNA aminoacylated with lysine is a very poor substrate for formylation compared with the same tRNA aminoacylated with methionine. By introducing further changes at base pairs 4:69 and 5:68 in the acceptor stem of the Mi:2 tRNA to those found in the E. coli initiator tRNA, we show that change of the U4:A69 base pair to G4:C69 and overproduction of lysyl-tRNA synthetase and methionyl-tRNA transformylase results in partial formylation of the mutant tRNA and activity of the formyllysyl-tRNAs in initiation of protein synthesis. Thus, the G4:C69 base pair contributes toward formylation of the tRNA and protein synthesis in E. coli can be initiated with formyllysine. We also discuss the implications of these and other results on recognition of tRNAs by E. coli lysyl-tRNA synthetase and on competition in cells among aminoacyl-tRNA synthetases.
Resumo:
The life-history of Neurospora in nature has remained largely unknown. The present study attempts to remedy this. The following conclusions are based on observation of Neurospora on fire-scorched sugar cane in agricultural fields, and reconstruction experiments using a colour mutant to inoculate sugar cane burned in the laboratory. The fungus persists in soil as heat-resistant dormant ascospores. These are activated by a chemical(s) released into soil from the burnt substrate. The chief diffusible activator of ascospores is furfural and the germinating ascospores infect the scorched substrate. An invasive mycelium grows progressively upwards inside the juicy sugar cane and produces copious macroconidia externally through fire-induced openings formed in the plant tissue, or by the mechanical rupturing of the plant epidermal tissue by the mass of mycelium. The loose conidia are dispersed by wind and/or foraged by microfauna. It is suggested that the constant production of macroconidia, and their ready dispersal, serve a physiological role: to drain the substrate of minerals and soluble sugars, thereby creating nutritional conditions which stimulate sexual reproduction by the fungus. Sexual reproduction in the sugar-depleted cellulosic substrate occurs after macroconidiation has ceased totally and is favoured by the humid conditions prevailing during the monsoon rains. Profuse microconidiophores and protoperithecia are produced simultaneously in the pockets below the loosened epidermal tissue. Presumably protoperithecia are fertilized by microconidia which are possibly transmitted by nematodes active in the dead plant tissue. Mature perithecia release ascospores in situ which are passively liberated in the soil by the disintegration of the plant material and are, apparently, distributed by rain or irrigation water.
Resumo:
The SUMO ligase activity of Mms21/Nse2, a conserved member of the Smc5/6 complex, is required for resisting extrinsically induced genotoxic stress. We report that the Mms21 SUMO ligase activity is also required during the unchallenged mitotic cell cycle in Saccharomyces cerevisiae. SUMO ligase-defective cells were slow growing and spontaneously incurred DNA damage. These cells required caffeine-sensitive Mec1 kinase-dependent checkpoint signaling for survival even in the absence of extrinsically induced genotoxic stress. SUMO ligase-defective cells were sensitive to replication stress and displayed synthetic growth defects with DNA damage checkpoint-defective mutants such as mec1, rad9, and rad24. MMS21 SUMO ligase and mediator of replication checkpoint 1 gene (MRC1) were epistatic with respect to hydroxyurea-induced replication stress or methyl methanesulfonate-induced DNA damage sensitivity. Subjecting Mms21 SUMO ligase-deficient cells to transient replication stress resulted in enhancement of cell cycle progression defects such as mitotic delay and accumulation of hyperploid cells. Consistent with the spontaneous activation of the DNA damage checkpoint pathway observed in the Mms21-mediated sumoylation-deficient cells, enhanced frequency of chromosome breakage and loss was detected in these mutant cells. A mutation in the conserved cysteine 221 that is engaged in coordination of the zinc ion in Loop 2 of the Mms21 SPL-RING E3 ligase catalytic domain resulted in strong replication stress sensitivity and also conferred slow growth and Mec1 dependence to unchallenged mitotically dividing cells. Our findings establish Mms21-mediated sumoylation as a determinant of cell cycle progression and maintenance of chromosome integrity during the unperturbed mitotic cell division cycle in budding yeast.
Resumo:
The role of inter-subunit interactions in maintaining optimal catalytic activity in triosephosphate isomerase (TIM) has been probed, using the Plasmodium falciparum enzyme as a model. Examination of subunit interface contacts in the crystal structures suggests that residue 75 (Thr, conserved) and residue 13 (Cys, variable) make the largest number of inter-subunit contacts. The mutants Cys13Asp (C13D) and Cys13Glu (C13E) have been constructed and display significant reduction in catalytic activity when compared with wild-type (WT) enzyme (similar to 7.4-fold decrease in k(cat) for the C13D and similar to 3.3-fold for the C13E mutants). Analytical gel filtration demonstrates that the C13D mutant dissociates at concentrations < 1.25 mu M, whereas the WT and the C13E enzymes retain the dimeric structure. The order of stability of the mutants in the presence of chemical denaturants, like urea and guanidium chloride, is WT > Cys13Glu > Cys13Asp. Irreversible thermal precipitation temperatures follow the same order as well. Modeling studies establish that the Cys13Asp mutation is likely to cause a significantly greater structural perturbation than Cys13Glu. Analysis of sequence and structural data for TIMs from diverse sources suggests that residues 13 and 82 form a pair of proximal sites, in which a limited number of residue pairs may be accommodated.
Resumo:
GMP synthetase, a class I amidotransferase, catalyzes the last step of the purine biosynthetic pathway, where ammonia from glutamine is incorporated into xanthosine 5'-monophospate to yield guanosine 5'-monnophosphate as the main product. Combined biochemical, structural, and computational studies of glutamine amidotransferases have revealed the existence of physically separate active sites connected by molecular tunnels that efficiently transfer ammonia from the glutaminase site to the synthetase site. Here, we have investigated aspects of ammonia channeling in P. falciparum GMP synthetase using biochemical assays in conjunction with N-15-edited proton NMR spectroscopy. Our results suggest that (1) ammonia released from glutamine is not equilibrated with the external medium (2) saturating concentrations of glutamine do not obliterate the incorporation of external ammonia into GMP, and (3) ammonia in the external medium can access the thioester intermediate when the ATPPase domain is bound to substrates. Further, mutation of Cys-102 to alanine confirmed its identity as the catalytic residue in the glutaminase domain, and ammonia-dependent assays on the mutant indicated glutamine to be a partial uncompetitive inhibitor of the enzyme.
Resumo:
The DNA-binding properties of the EcoP15I DNA methyltransferase (M . EcoP15I; MTase) were studied using electrophoretic mobility shift assays. We show by molecular size-exclusion chromatography and dimethyl suberimidate crosslinking that M . EcoP15I is a dimer in solution. While M . EcoP15I binds approx. threefold more tightly to its recognition sequence, 5'-CAGCAG-3', than to non-specific sequences in the presence of AdoMet or its analogs, the discrimination between specific and non-specific sequences significantly increases in presence of ATP. These results suggest for the first time a role for ATP in DNA recognition by type-III restriction-modification enzymes. Furthermore, we show that although c2 EcoPI mutant MTases are defective in AdoMet binding, they are still able to bind DNA in a sequence-specific manner.
Resumo:
Cys126 is a completely conserved residue in triosephosphate isomerase that is proximal to the active site but has been ascribed no specific role in catalysis. A previous study of the C126S and C126A mutants of yeast TIM reported substantial catalytic activity for the mutant enzymes, leading to the suggestion that this residue is implicated in folding and stability [Gonzalez-Mondragon E et al. (2004) Biochemistry43, 3255–3263]. We re-examined the role of Cys126 with the Plasmodium falciparum enzyme as a model. Five mutants, C126S, C126A, C126V, C126M, and C126T, were characterized. Crystal structures of the 3-phosphoglycolate-bound C126S mutant and the unliganded forms of the C126S and C126A mutants were determined at a resolution of 1.7–2.1 Å. Kinetic studies revealed an approximately five-fold drop in kcat for the C126S and C126A mutants, whereas an approximately 10-fold drop was observed for the other three mutants. At ambient temperature, the wild-type enzyme and all five mutants showed no concentration dependence of activity. At higher temperatures (> 40 °C), the mutants showed a significant concentration dependence, with a dramatic loss in activity below 15 μm. The mutants also had diminished thermal stability at low concentration, as monitored by far-UV CD. These results suggest that Cys126 contributes to the stability of the dimer interface through a network of interactions involving His95, Glu97, and Arg98, which form direct contacts across the dimer interface.
Resumo:
P>Transcription activator C employs a unique mechanism to activate mom gene of bacteriophage Mu. The activation process involves, facilitating the recruitment of RNA polymerase (RNAP) by altering the topology of the promoter and enhancing the promoter clearance by reducing the abortive transcription. To understand the basis of this multi-step activation mechanism, we investigated the nature of the physical interaction between C and RNAP during the process. A variety of assays revealed that only DNA-bound C contacts the beta' subunit of RNAP. Consistent to these results, we have also isolated RNAP mutants having mutations in the beta' subunit which were compromised in C-mediated activation. Mutant RNAPs show reduced productive transcription and increased abortive initiation specifically at the C-dependent mom promoter. Positive control (pc) mutants of C, defective in interaction with RNAP, retained the property of recruiting RNAP to the promoter but were unable to enhance promoter clearance. These results strongly suggest that the recruitment of RNAP to the mom promoter does not require physical interaction with C, whereas a contact between the beta' subunit and the activator, and the subsequent allosteric changes in the active site of the enzyme are essential for the enhancement of promoter clearance.
Resumo:
The Res subunits of the type III restriction-modification enzymes share a statistically significant amino acid sequence similarity with several RNA and DNA helicases of the so-called DEAD family. It was postulated that in type III restriction enzymes a DNA helicase activity may be required for local unwinding at the cleavage site. The members of this family share seven conserved motifs, all of which are found in the Res subunit of the type III restriction enzymes. To determine the contribution, if any, of these motifs in DNA cleavage by EcoPI, a type III restriction enzyme, we have made changes in motifs I and II. While mutations in motif I (GTGKT) clearly affected ATP hydrolysis and resulted in loss of DNA cleavage activity, mutation in motif II (DEPH) significantly decreased ATP hydrolysis but had no effect on DNA cleavage. The double mutant R.EcoPIK90R-H229K showed no significant ATPase or DNA restriction activity though ATP binding was not affected. These results imply that there are at least two ATPase reaction centres in EcoPI restriction enzyme. Motif I appears to be involved in coupling DNA restriction to ATP hydrolysis. Our results indicate that EcoPI restriction enzyme does not have a strand separation activity. We suggest that these motifs play a role in the ATP-dependent translocation that has been proposed to occur in the type III restriction enzymes. (C) 1997 Academic Press Limited.
Resumo:
The active site lysine residue, K256, involved in Schiffs base linkage with pyridoxal-5'-phosphate (PEP) in sheep liver recombinant serine hydroxymethyltransferase (rSHMT) was changed to glutamine or arginine by site-directed mutagenesis. The purified K256Q and K256R SHMTs had less than 0.1% of catalytic activity with serine and H(4)folate as substrates compared to rSHMT. The mutant enzymes also failed to exhibit the characteristic visible absorbance spectrum (lambda(max) 425 nm) and did not produce the quinonoid intermediate (lambda(max) 495 nm) upon the addition of glycine and H(4)folate. The mutant enzymes were unable to catalyze aldol cleavage of beta-phenylserine and transamination of D-alanine. These results suggested that the mutation of the lysine had resulted in the inability of the enzyme to bind to the cofactor. Therefore, the K256Q SHMT was isolated as a dimer and the K256R SHMT as a mixture of dimers and tetramers which were converted to dimers slowly. On the other hand, rSHMT was stable as a tetramer for several months, further confirming the role of PLP in maintenance of oligomeric structure. The mutant enzymes also failed to exhibit the increased thermal stability upon the addition of serine, normally observed with rSHMT. The enhanced thermal stability has been attributed to a change in conformation of the enzyme from open to closed form leading to reaction specificity. The mutant enzymes were unable to undergo this conformational change probably because of the absence of bound cofactor.