865 resultados para Riparian ecology
Resumo:
Luciferid shrimps have short life spans and a rapid turnover of generations, engage in sequential spawning, and protect their eggs during incubation. This study investigates the ecology of Lucifer faxoni Borradaile, 1915 in the littoral zone, Ubatuba region, São Paulo. Sampling was conducted monthly from July 2005 to December 2006 using a Renfro net trawled over a distance of 50 m for a total sampling effort of 50 m² at each station. Nine stations were sampled, ranging from 1 to 15 m deep. Three stations each were grouped into zones 1, 2 and 3 (Z1, Z2 and Z3). Monthly values of salinity, temperature and rainfall were recorded at each station. The pre-buccal somite length (SL) of each specimen was measured. The results showed that in shallower zones (Z1 and Z2), 6306 individuals were captured, whereas in the deeper zone (Z3), 3808 specimens were captured, but no significant differences in SL was detected between the specimens from Z1 and Z2 and those from Z3 (ANOVA, p=0.25). The abundance of shrimps did not differ significantly between seasons (Tukey’s test, p=0.02) except in the spring. The sex ratio differed significantly over the seasons (χ², p<0.05). The results were closely associated with environmental factors with respect to the spatial and seasonal distribution of L. faxoni. Rainfall affected salinity directly, and contributed to the displacement of these shrimps to deeper areas.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Artificial neural networks (ANNs) have been widely applied to the resolution of complex biological problems. An important feature of neural models is that their implementation is not precluded by the theoretical distribution shape of the data used. Frequently, the performance of ANNs over linear or non-linear regression-based statistical methods is deemed to be significantly superior if suitable sample sizes are provided, especially in multidimensional and non-linear processes. The current work was aimed at utilising three well-known neural network methods in order to evaluate whether these models would be able to provide more accurate outcomes in relation to a conventional regression method in pupal weight predictions of Chrysomya megacephala, a species of blowfly (Diptera: Calliphoridae), using larval density (i.e. the initial number of larvae), amount of available food and pupal size as input data. It was possible to notice that the neural networks yielded more accurate performances in comparison with the statistical model (multiple regression). Assessing the three types of networks utilised (Multi-layer Perceptron, Radial Basis Function and Generalised Regression Neural Network), no considerable differences between these models were detected. The superiority of these neural models over a classical statistical method represents an important fact, because more accurate models may clarify several intricate aspects concerning the nutritional ecology of blowflies.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this work is to study the relation between humidity, density, porosity and shrinkage of the floodplain soil and riparian vegetation and their ability to store water. For this purpose, two locations for every type of soils were evaluated. Both were placed at the Agronomy University (Faculdade de Ciências Agronômicas) in São Manuel, State of São Paulo, Brazil. The floodplain soil was vegetated with Southern Cattail (Typha domingensis). In both places, soil samples were collected from several depths: 0, 30, 60 and 100 cm. Results show that lower soil density values (0.15 g/cm3) with organic texture and high porosities values (up to 86.2%) were found in samples with the highest organic material content in the floodplain soil. For this field experiment, flood plains soils (characterised as basin gley soils) presented high volumetric instability with a retratibility of 67.49% and higher water storage capacities compared to riparian stands soils (characterised as fluvic neosoils).
Resumo:
Beginning in the late 1980s, large groups of previously unidentified killer whales (Orcinus orca) were sighted off the west coast of Vancouver Island and in the Queen Charlotte Islands, British Columbia. Scientists working in this region produced two killer whale photo-identification catalogues that included both transient (mammal-eating) whales and 65 individual whales that investigators believed represented a distinct killer whale community (Ford et al. 1992, Heise et al. 1993). It was thought that these killer whales maintained a generally offshore distribution and were provisionally termed “offshores”; a term that has since been used as a population identifier for the eastern temperate North Pacific offshore killer whale population. Then in September 1992, 75 unidentified whales entered the Strait of Juan de Fuca just south and east of Victoria, British Columbia (Walters et al. 1992). Although most of these whales had not been seen before, two were matched to killer whales in the Queen Charlotte photo-identification catalogue (Ford et al. 1992, Heise et al. 1993) and were thus listed as “offshore” killer whales. During a similar time period, other large groups of killer whales, previously unidentified, were also being sighted off Alaska and California (Dahlheim et al. 1997; Nancy Black and Alisa Schulman- Janiger, unpublished data, respectively).
Resumo:
The occurrence of a species of Echinococcus (Rudolphi, 1801) on St Lawrence Island was noted by the writers in early 1950. Recognition of its unusual host relationships led to an investigation of the ecology of this cestode, E. sibiricensis Rausch & Schiller, 1954. It is the purpose of this paper to report the results of this work, with emphasis on alveolar hydatid disease in man, of which this cestode is the etiologic agent.
Resumo:
Analytical methods accounting for imperfect detection are often used to facilitate reliable inference in population and community ecology. We contend that similar approaches are needed in disease ecology because these complicated systems are inherently difficult to observe without error. For example, wildlife disease studies often designate individuals, populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the uncertainty associated with these state assignments remains largely ignored or unaccounted for. We demonstrate how recent developments incorporating observation error through repeated sampling extend quite naturally to hierarchical spatial models of disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain of avian influenza virus in migratory waterfowl and a pathogenic fungus recently implicated in the global loss of amphibian biodiversity are used as motivating examples. Both show that relatively simple modifications to study designs can greatly improve our understanding of complex spatio-temporal disease dynamics by rigorously accounting for uncertainty at each level of the hierarchy.
Resumo:
This paper reports the results of a comparative study of the development of the larval Echinococcus multilocularis Leuckart, 1863), and associated tissue reaction in naturally and experimentally infected mammals representing 31 species. The histogenesis of the larval cestode was traced in detail in arvicoline rodents of several species, and interspecific differences were defined. In arvicoline rodents, the developing larva exhibited host-specific characteristics within about a month after infection was established. The tissue reaction in Microtus oeconomus was characterized by the production of a large quantity of detritus around the larva, and by the formation of a thick epithelioid zone. In one subspecies, M. oeconomus innuitus, development of the larva was retarded, and the detrital mass was often calcified; in another, M. oeconomus operarius, the detritus rarely became calcified and the larva proliferated more rapidly. In M. pennsylvanicus, the tissue reaction was minimal, and little detritus was present. The characteristics of the tissue reaction in M. montebelli placed it in an intermediate position between the aforementioned species. In Clethrionomys rutilus, a thin epithelioid zone and an outer zone of loose collagenous fibers composed the adventitial layer; exogenous budding was retarded in this vole. A minimal tissue reaction occurred in Lagurus curtatus. In Lemmus spp., larger cysts were characteristic, but areas of small-cystic proliferation were always present. Similar differences in species or subspecies of Citellus and Dicrostonyx were described. Lesions of alveolar bydatid disease in man also were studied. The invasive growth of the larval cestode in the human liver involves a process comparable to small-cystic proliferation in the natural intermediate hosts. Although the later stages of development of the larval cestode are inhibited in man, exogenous proliferation of vesicles continues for the life of the host. The lesion in man was compared with a morphologically similar formation produced by anomalous development of the larval E. granulosus in the bovine liver. The latter is distinguished by the absence of areas of small-cystic proliferation. Non-echinococcal lesions found in the tissues studied, some of which resembled foci caused by the larval E. multilocularis, were briefly discussed.
Resumo:
Grassland ecosystems have been severely reduced and grassland bird populations have experienced consistent declines. National Park Service (NPS) properties on the Great Plains provide breeding habitat for grassland songbirds, though little is known about the quality of this habitat. A short-term study on songbirds at three NPS properties complemented current monitoring, providing an among park comparison addressing grassland bird productivity and fidelity relative to NPS property size. During 2008-2009, I assessed avian species richness, and estimated bird density and grassland songbird nest success. Bird species richness was greatest at small and medium sites, while number of nesting obligate species was greatest at the large site. Species-specific densities varied among sites, with few grassland obligates occurring at all three sites. Nest success estimates for grassland obligates were highest at the small site and lower at the large site. Another method to quantify habitat quality is assessment of breeding site fidelity. Current extrinsic markers used in monitoring site fidelity are inadequate for small birds; stable isotope analyses provide an alternative. I compared two techniques for assigning stable isotope tissue origin and measured grassland songbird site fidelity. My method of assigning origin provided site-specific variances of expected stable isotope values, an improvement over the most commonly used method. Fidelity tended to be higher at the large site, which may indicate a more robust breeding community of grassland birds. The small size of two of my sites precluded large sample sizes and made strong inferences difficult. To quantify how scientists cope with weak inference, I conducted a literature review. Strong inference was rarely observed, and most authors of weak-inference papers provided specific management recommendations. I suggest that adaptive management is an ideal method to resolve uncertainty from weak inference. Managers should consider my results within the context of regional and global management and the extent to which their unit might aide songbird conservation.
Resumo:
ABSTRACT Riparian buffer zones are important sites of biodiversity, sediment trapping, pollutant removal, and hydrologic regulation that have significant implications for both people and wildlife. Urbanization’s influence on and need for adequate water quality increases the need for careful planning in regards to riparian areas. Wildlife are key components in the ecosystem functions of riparian zones and require consideration in peri-urban planning as well. This study reviews relevant literature to determine the recommended minimum riparian buffer width for maintaining water quality and habitat along Stevens Creek in Lincoln, Nebraska. Only sources that listed a specific purpose related to water quality and habitat for their buffer width recommendations were considered. The study found that the baseline buffer width recommended for Stevens Creek that would be adequate for both water quality maintenance and basic habitat is 50 ft (15 m) per side. This number may be modified based on other factors such as slope, soil particle size, adjacent land use, the presence of certain wildlife communities, stream size, and stream order.
Resumo:
Expensive, extensive and apparently lethal control measures have been applied against many species of pest vertebrates and invertebrates for decades. In spite of this, few pests have been annihilated, and in many cases the stated goals have become progressively more modest, so that now we speak of saving foliage or a crop, rather than extermination. It is of interest to examine the reasons why animals are so difficult to exterminate, because this matter, of course, has implications for the type of control policy we pursue in the future. Also, it has implications for the problem of evaluating comparatively various resource management strategies. There are many biological mechanisms which could, in principle, enhance the performance of an animal population after control measures have been applied against it. These are of four main types: genetic, physiological, populationa1, and environmental. We are all familiar with the fact that in applying a control measure, we are, from the pest's point of view, applying intense selection pressure in favor of those individuals that may be preadapted to withstand the type of control being used. The well-known book by Brown (1958) documents, for invertebrates, a tremendous number of such cases. Presumably, vertebrates can show the same responses. Not quite so familiar is the evidence that sub-lethal doses of a lethal chemical may have a physiologically stimulating effect on population performance of the few individuals that happen to survive (Kuenen, 1958). With further research, we may find that this phenomenon occurs throughout the animal kingdom. Still less widely recognized is the fact that pest control elicits a populational homeostatic mechanism, as well as genetic and physiological homeostatic mechanisms. Many ecologists, such as Odum and Allee (1950, Slobodkin (1955), Klomp (1962) and the present author (1961, 1963) have pointed out that the curve for generation survival, or the curve for trend index as a function of last generations density is of great importance in population dynamics.
Resumo:
The feeding ecology of the Brazilian silverside, Atherinella brasiliensis, in a sub-tropical estuary of Brazil was investigated through the gut analysis of 1431 individuals. We described dietary composition and analysed seasonal, estuarine habitat, and body size variations in the diet; trophic level; feeding diversity; and gut fullness indices. Results reveal that A. brasiliensis is a typical, generalistic and opportunistic predator that makes use of a wide array of prey types (at least 89 different types), with zooplankton (mainly calanoids), diatoms, terrestrial insects, and plant detritus making up the bulk of the overall diet. The exotic calanoid Temora turbinata ranked as the primary prey. A wide feeding diversity (mean H` = 2.26), low trophic level (mean TROPH = 2.57), and high gut replenishment were persistent across seasons and habitats. Diet composition varied largely and significantly with respect to habitat, season, and body size. A closer assessment showed that habitat and season had a stronger effect on diet than fish size.
Resumo:
Brycon nattereri (Ostariophysi: Characiformes: Characidae), a threatened South American freshwater fish, occurs in the Parana, Tocantins and Sao Francisco river basins in central Brazil. It is a middle-sized (up to 50 cm SL), omnivorous species, which occurs in swift, clear-water rivers with well-preserved riparian vegetation. Main threats to the species are water pollution, dam building, and deforestation.