974 resultados para Response to intervention model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: The adaptive immune response against hepatitis C virus (HCV) is significantly shaped by the host's composition of HLA alleles. Thus, the HLA phenotype is a critical determinant of viral evolution during adaptive immune pressure. Potential associations of HLA class I alleles with polymorphisms of HCV immune escape variants are largely unknown. Methods: Direct sequence analysis of the genes encoding the HCV proteins E2, NS3 and NS5B in a cohort of 159 patients with chronic HCV genotype 1 infection who were treated with pegylated interferon-alfa 2b and ribavirin in a prospective controlled trial for 48 weeks was exhibited. HLA class I genotyping was performed by strand-specific reverse hybridization with the INNO-LiPA line probe assays for HLA-A and HLA-B and by strand-specific PCR-SSP. We analyzed each amino acid position of HCV proteins using an extension of Fisher's exact test for associations with HLA alleles. In addition, associations of specific HLA alleles with inflammatory activity, liver fibrosis, HCV RNA viral load and virologic treatment outcome were investigated. Results: Separate analyses of HCV subtype 1a and 1b isolates revealed substantially different patterns of HLA-restricted polymorphisms between subtypes. Only one polymorphism within NS5B (V2758x) was significantly associated with HLA B*15 in HCV genotype 1b infected patients (adjusted p=0,048). However, a number of HLA class I-restricted polymorphisms within novel putative HCV CD8+ T cell epitopes (genotype 1a: HLA-A*11 GTRTIASPK1086-1094 [NS3], HLA-B*07 WPAPQGARSL1111-1120 [NS3]; genotype 1b: HLA-A*24 HYAPRPCGI488-496 [E2], HLA-B*44 GENETDVLL530-538 [E2], HLA-B*15 RVFTEAMTRY2757-2766 [NS5B]) were observed with high predicted epitope binding scores assessed by the web-based software SYFPEITHI (>21). Most of the identified putative epitopes were overlapping with already otherwise published epitopes, indicating a high immunogenicity of the accordant HCV protein region. In addition, certain HLA class I alleles were associated with inflammatory activity, stage of liver fibrosis, and sustained virologic response to antiviral therapy. Conclusions: HLA class I restricted HCV sequence polymorphisms are rare. HCV polymorphisms identified within putative HCV CD8+ T cell epitopes in the present study differ in their genomic distribution between genotype 1a and 1b isolates, implying divergent adaptation to the host's immune pressure on the HCV subtype level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigative report produced by Iowa Citizens' Aide/Ombudsman

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Changes in the sex allocation (i.e. in pollen versus seed production) of hermaphroditic plants often occur in response to the environment. In some homosporous ferns, gametophytes choose their gender in response to chemical cues sent by neighbours, such that spores develop as male gametophytes if they perceive a female or hermaphrodite nearby. Here it is considered whether a similar process might occur in the androdioecious angiosperm species Mercurialis annua, in which males co-occur with hermaphrodites; previous work on a Spanish population of M. annua found that individuals were more likely to develop as males at high density. METHODS: Using a novel approach to treat plants with leachate from pots containing males or hermaphrodites of M. annua, the hypothesis that individuals assess their mating opportunities, and adjust their sex expression accordingly, was tested through an exchange of chemical cues through the soil. KEY RESULTS: For the population under study, from Morocco, no evidence was found for soil-signal-dependent sex expression: neither sex ratios nor sex allocation differed among experimental treatments. CONCLUSIONS: The results imply either that the Moroccan population under study behaves differently from that previously studied in Spain (pointing to potential geographical variation in plasticity for sex expression), or that our method failed to capture the signals used by M. annua for adjustment of sex expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: To perform a comprehensive study on the relationship between vitamin D metabolism and the response to interferon-α-based therapy of chronic hepatitis C. METHODOLOGY/PRINCIPAL FINDINGS: Associations between a functionally relevant polymorphism in the gene encoding the vitamin D 1α-hydroxylase (CYP27B1-1260 rs10877012) and the response to treatment with pegylated interferon-α (PEG-IFN-α) and ribavirin were determined in 701 patients with chronic hepatitis C. In addition, associations between serum concentrations of 25-hydroxyvitamin D(3) (25[OH]D(3)) and treatment outcome were analysed. CYP27B1-1260 rs10877012 was found to be an independent predictor of sustained virologic response (SVR) in patients with poor-response IL28B genotypes (15% difference in SVR for rs10877012 genotype AA vs. CC, p = 0.02, OR = 1.52, 95% CI = 1.061-2.188), but not in patients with favourable IL28B genotype. Patients with chronic hepatitis C showed a high prevalence of vitamin D insufficiency (25[OH]D(3)<20 ng/mL) during all seasons, but 25(OH)D(3) serum levels were not associated with treatment outcome. CONCLUSIONS/SIGNIFICANCE: Our study suggests a role of bioactive vitamin D (1,25[OH](2)D(3), calcitriol) in the response to treatment of chronic hepatitis C. However, serum concentration of the calcitriol precursor 25(OH)D(3) is not a suitable predictor of treatment outcome.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hatching is an important niche shift, and embryos in a wide range of taxa can either accelerate or delay this life-history switch in order to avoid stage-specific risks. Such behavior can occur in response to stress itself and to chemical cues that allow anticipation of stress. We studied the genetic organization of this phenotypic plasticity and tested whether there are differences among populations and across environments in order to learn more about the evolutionary potential of stress-induced hatching. As a study species, we chose the brown trout (Salmo trutta; Salmonidae). Gametes were collected from five natural populations (within one river network) and used for full-factorial in vitro fertilizations. The resulting embryos were either directly infected with Pseudomonas fluorescens or were exposed to waterborne cues from P. fluorescens-infected conspecifics. We found that direct inoculation with P. fluorescens increased embryonic mortality and induced hatching in all host populations. Exposure to waterborne cues revealed population-specific responses. We found significant additive genetic variation for hatching time, and genetic variation in trait plasticity. In conclusion, hatching is induced in response to infection and can be affected by waterborne cues of infection, but populations and families differ in their reaction to the latter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : A large body of evidence indicates that the innate immune system plays a key role in host response to viral infection. Recently, Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), and NOD-like receptor receptors (NLRs) have emerged as key innate immune sensors of microbial products, eliciting intracellular signaling and leading to the production of chemokines, cytokines and interferons (IFNs) that shape innate immune responses and coordinate the development of adaptive immunity. Poxviruses are currently developed as vaccines vectors for infectious diseases such as HIV, tuberculosis and malaria. Modified vaccinia virus Ankara (MVA) and New York vaccinia virus (NWAC) are attenuated, replication deficient strains of poxvirus. The mechanisms underlying innate immune responses to MVA and NYVAC are poorly characterized. Thus, the objectives of the project were to determine the innate immune profile stimulated by poxviruses in innate immune cells and to evaluate the impact of modifications in the viral genome on MVA and NYVAC immunogenicity. MVA stimulated the production of abundant amounts of chemokines and IFNß but low levels of cytokines by human macrophages. In contrast, NYVAC weakly stimulated the production of all mediators. Interestingly, MVA and NYVAC strongly stimulated innate immune responses in vivo and in human whole blood, suggesting that a soluble factors}, possibly a complement component, was required for optimal activation of innate immune cells by poxviruses. Modified MVA and NYVAC produced by single or multiple deletions of viral genes targeting crucial pathways of host innate immunity, and mutant poxviruses with limited replication capacity, increased the production of pro-inflammatory molecules by human whole blood. Gene expression profiling in human macrophages confirmed the increased immunologic stimulatory capacity of modified poxviruses. The pathways activated by MVA and NYVAC in innate immune cells were described by analysing the response of knockdown or shRNA transduced macrophages with impaired expression of TLRs and their adaptors (MyD8$ and TRIF), RLRs (RIG-I, MDA-5 and the adaptor IPS-1) and the NALP3 inflammasome composed óf the NLR NALP3, caspase-1 and ASC. These experiments revealed a critical role for TLR2-TLR6-MyD88 in the production of tFNß-independent chemokines and of MDA-5-IPS-1 in the production of IFNß and IFNßdependent chemokines. The transcription of the iL1b gene encoding for the IL-1ß cytokine was initiated through TLR2-MyD88, whereas the maturation and the secretion of IL-1ß were controlled by the NALP3 inflammasome. Finally, we analyzed the role of macrophage migration inhibitory factor (MIF), a mediator of inflammation and innate immune responses, in MVA infection. We observed that MVA infection increased MIF production by innate immune cells and that MIF deficiency impaired macrophage and dendritic cell responses (ie migration, maturation, cytokine and IFN production) to MVA infection in vitro and in vivo. Moreover, MIF-deficiency resulted in delayed anti-MVA specific antibody production in mice immunized with the virus. In conclusion, we demonstrate. that poxviruses can be modified genetically to improve their immunogenicity. We also report the first comprehensive analysis of poxvirus sensing by innate immune cells, showing that the TLR, RLR and NLR pathways play specific and coordinated roles in regulating cytokine, chemokine and IFN response to poxvirus infection. Finally, we show that MIF is an integral host component involved in innate and adaptive immune responses to MVA infection. The present findings provide important information relevant to the study of the pathogenesis of poxvirus infections and allow a better understanding of the immunogenic potential of vaccine vectors, which is required for the development of optimized modìfied pox-vaccine vectors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major challenge in this era of rapid climate change is to predict changes in species distributions and their impacts on ecosystems, and, if necessary, to recommend management strategies for maintenance of biodiversity or ecosystem services. Biological invasions, studied in most biomes of the world, can provide useful analogs for some of the ecological consequences of species distribution shifts in response to climate change. Invasions illustrate the adaptive and interactive responses that can occur when species are confronted with new environmental conditions. Invasion ecology complements climate change research and provides insights into the following questions: i) how will species distributions respond to climate change? ii) how will species movement affect recipient ecosystems? and iii) should we, and if so how can we, manage species and ecosystems in the face of climate change? Invasion ecology demonstrates that a trait-based approach can help to predict spread speeds and impacts on ecosystems, and has the potential to predict climate change impacts on species ranges and recipient ecosystems. However, there is a need to analyse traits in the context of life-history and demography, the stage in the colonisation process (e.g., spread, establishment or impact), the distribution of suitable habitats in the landscape, and the novel abiotic and biotic conditions under which those traits are expressed. As is the case with climate change, invasion ecology is embedded within complex societal goals. Both disciplines converge on similar questions of "when to intervene?" and "what to do?" which call for a better understanding of the ecological processes and social values associated with changing ecosystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suite à une infection avec le protozoaire Leishmania major (L. major), les souris sensibles de souche BALB/c développent des lésions progressives associées à une maturation des cellules CD4+ TH2 sécrétant de l'IL-4. A l'inverse, les souris résistantes de souche C57BL/6 guérissent à terme, sous l'influence de l'expansion des cellules CD4+ TH1 produisant de l'IFNy qui a un effet synergique avec le TNF ("tumor necrosis factor") sur l'activation des macrophages et leur fonction leishmanicide. Lors de notre étude nous avons montré que des souris C57BL/6 doublement déficientes en TNF et FasL ("Fas ligand") infectées par L. major ne guérissaient ni leur lésions ni ne contrôlaient la réplication de parasites malgré une réponse de type TH1. Bien que l'activité de synthétase inductible de l'oxyde nitrique ("iNOs") soit comparable chez les souris doublement ou simplement déficientes, seules celles déficientes en FasL ont démontré une incapacité à contrôler la réplication parasitaire. De surcroît il est apparu que le FasL a un effet synergique avec l'IFNy. L'adjonction de FasL à une culture cellulaire de macrophages stimulés par l'IFNy conduit à une activation de ces cellules. Celle-ci est démontrée par l'augmentation de la production de TNF et de NO par les macrophages ainsi que par l'élimination des parasites intracellulaires par ces mêmes cellules. Alors que le FasL et l'IFNy semblent essentiels au contrôle de la réplication des pathogènes intracellulaires, la contribution de TNF s'oriente davantage vers le contrôle de l'inflammation. L'activation macrophagique via Fas précède la mort cellulaire qui survient quelques jours plus tard. Cette mort cellulaire programmée était indépendante de la cascade enzymatique des caspases, au vu de l'absence d'effet de l'inhibiteur non-spécifique ZVAD-fmk des caspases. Ces résultats suggèrent que l'interaction Fas-FasL agit comme une costimulation nécessaire à une activation efficace des macrophages, la mort cellulaire survenant consécutivement à l'activation des macrophages.¦-¦Upon infection with the protozoan parasite Leishmania major (L. major), susceptible BALB/c mice develop non healing lesions associated with the maturation of CD4+ TH2 cells secreting IL-4. In contrast, resistant C57BL/6 mice are able to heal their lesions, because of CD4+ TH1 cell expansion and production of high levels of IFNy, which synergizes with tumour necrosis factor (TNF) in activating macrophages to their microbicidal state. In our study we showed that C57BL/6 mice lacking both TNF and Fas ligand (FasL) infected with L. major neither resolved their lesions nor controlled L. major replication despite a strong TH1 response. Although comparable inducible nitric oxide synthase (iNOs) was measured in single or double deficient mice, only mice deficient in FasL failed to control the parasite replication. Moreover FasL synergized with IFNy for the induction of leishmanicidal activity within macrophages infected with L. major in vitro. Addition of FasL to IFNy stimulated macrophages led to their activation, as reflected by the secretion of tumour necrosis factor and nitrite oxide, as well as the induction of their microbicidal activity, resulting in the killing of intracellular L. major. While FasL along with IFNy and iNOs appeared to be essential for the complete control of intracellular pathogen replication, the contribution of TNF appeared more important in controlling the inflammation on the site of infection. Macrophage activation via Fas pathway preceded cell death, which occurred a few days after Fas mediated activation. This program cell death was independent of caspase enzymatic activities as revealed by the lack of effect of ZVAD-fmk, a pan-caspase inhibitor. These results suggested that the Fas-FasL pathway, as part of the classical activation pathway of the macrophages, is essential in the stimulation of macrophage leading to a microbicidal state and to AICD, and may thus contribute to the pathogenesis of L. major infection.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This letter to the Editor comments on the article When 'neutral' evidence still has probative value (with implications from the Barry George Case) by N. Fenton et al. [[1], 2014].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The Alternative Lengthening of Telomeres (ALT) mechanism is a significant prognostic factor for longer survival in patients with GBM, irrespective of age. The reasons for this are unknown. We considered two possibilities; firstly that ALT identifies a subset of less aggressive GBMs, or alternatively, a group of tumours that respond more favourably to adjuvant therapy. Methods: ALT was determined by staining for ALT Associated PML Bodies (APBs) in archival tissue in a retrospective analysis of 573 GBM patients. IDH1 mutation was determined by immunohistochemistry in a subset of these. Results: We identified the presence of the telomerase-independent ALT in 15% of GBM patients and found that it correlated with survival (22% of ALT patients survive more than 2 years compared to 9% for non-ALT). This survival advantage was independent of surgery type (biopsy or full resection) and treatment (radiotherapy and chemotherapy). Interestingly ALT conferred a significant survival advantage for patients who only received surgery (13.3 months compared to 5.5 months) (19% vs 1% .2 year survival). This survival benefit was also observed in GBM patients who received surgery and radiotherapy (18.5% vs 2.4%. 2 year survival), but less so for chemotherapy (21% vs 17% . 2 year survival). For the ALT patients the fraction surviving more than 2 years did not improve significantly with adjuvant therapy. IDH1 mutation also associated with ALT. Conclusions: These data indicate ALT+ tumours are biologically distinct and associated with improved patient survival, probably due to less aggressive/invasive growth. However they respond poorly to current adjuvant treatment and therefore new therapies are urgently needed for this group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To develop a provisional definition for the evaluation of response to therapy in juvenile dermatomyositis (DM) based on the Paediatric Rheumatology International Trials Organisation juvenile DM core set of variables. METHODS: Thirty-seven experienced pediatric rheumatologists from 27 countries achieved consensus on 128 difficult patient profiles as clinically improved or not improved using a stepwise approach (patient's rating, statistical analysis, definition selection). Using the physicians' consensus ratings as the "gold standard measure," chi-square, sensitivity, specificity, false-positive and-negative rates, area under the receiver operating characteristic curve, and kappa agreement for candidate definitions of improvement were calculated. Definitions with kappa values >0.8 were multiplied by the face validity score to select the top definitions. RESULTS: The top definition of improvement was at least 20% improvement from baseline in 3 of 6 core set variables with no more than 1 of the remaining worsening by more than 30%, which cannot be muscle strength. The second-highest scoring definition was at least 20% improvement from baseline in 3 of 6 core set variables with no more than 2 of the remaining worsening by more than 25%, which cannot be muscle strength (definition P1 selected by the International Myositis Assessment and Clinical Studies group). The third is similar to the second with the maximum amount of worsening set to 30%. This indicates convergent validity of the process. CONCLUSION: We propose a provisional data-driven definition of improvement that reflects well the consensus rating of experienced clinicians, which incorporates clinically meaningful change in core set variables in a composite end point for the evaluation of global response to therapy in juvenile DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fragility fractures are recognized complication of diabetes, but yet the underlying mechanisms remain poorly understood. This is particularly pronounced in type 2 diabetes in which the propensity to fall is increased but bone mass is not necessarily low. Thus, whether factors implicated in the development of insulin resistance and diabetes directly impact on the musculoskeletal system remains to be investigated. PPARβ(-/-) mice have reduced metabolic activity and are glucose intolerant. We examined changes in bone and muscle in PPARβ(-/-) mice and investigated both the mechanism behind those changes with age as well as their response to exercise. Compared with their wild type, PPARβ(-/-) mice had an accelerated and parallel decline in both muscle and bone strength with age. These changes were accompanied by increased myostatin expression, low bone formation, and increased resorption. In addition, mesenchymal cells from PPARβ(-/-) had a reduced proliferation capacity and appeared to differentiate into more of an adipogenic phenotype. Concomitantly we observed an increased expression of PPARγ, characteristic of adipocytes. The anabolic responses of muscle and bone to exercise were also diminished in PPARβ(-/-) mice. The periosteal bone formation response to direct bone compression was, however, maintained, indicating that PPARβ controls periosteal bone formation through muscle contraction and/or metabolism. Taken together, these data indicate that PPARβ deficiency leads to glucose intolerance, decreased muscle function, and reduced bone strength. On a molecular level, PPARβ appears to regulate myostatin and PPARγ expression in muscle and bone, thereby providing potential new targets to reverse bone fragility in patients with metabolic disturbances.