963 resultados para Resistivity probe
Resumo:
Computer-aided surgery (CAS) allows for real-time intraoperative feedback resulting in increased accuracy, while reducing intraoperative radiation. CAS is especially useful for the treatment of certain pelvic ring fractures, which necessitate the precise placement of screws. Flouroscopy-based CAS modules have been developed for many orthopedic applications. The integration of the isocentric flouroscope even enables navigation using intraoperatively acquired three-dimensional (3D) data, though the scan volume and imaging quality are limited. Complicated and comprehensive pathologies in regions like the pelvis can necessitate a CT-based navigation system because of its larger field of view. To be accurate, the patient's anatomy must be registered and matched with the virtual object (CT data). The actual precision within the region of interest depends on the area of the bone where surface matching is performed. Conventional surface matching with a solid pointer requires extensive soft tissue dissection. This contradicts the primary purpose of CAS as a minimally invasive alternative to conventional surgical techniques. We therefore integrated an a-mode ultrasound pointer into the process of surface matching for pelvic surgery and compared it to the conventional method. Accuracy measurements were made in two pelvic models: a foam model submerged in water and one with attached porcine muscle tissue. Three different tissue depths were selected based on CT scans of 30 human pelves. The ultrasound pointer allowed for registration of virtually any point on the pelvis. This method of surface matching could be successfully integrated into CAS of the pelvis.
Resumo:
Decision-making and memory are fundamental processes for successful human behaviour. For eye movements, the frontal eye fields (FEF), the supplementary eye fields (SEF), the dorsolateral prefrontal cortex (DLPFC), the ventrolateral frontal cortex and the anterior cingulum are important for these cognitive processes. The online approach of transcranial magnetic stimulation (TMS), i.e., the application of magnetic pulses during planning and performance of saccades, allows interfering specifically with information processing of the stimulated region at a very specific time interval (chronometry of cortical processing). The paper presents studies, which showed the different roles of the FEF and DLPFC in antisaccade control. The critical time interval of DLPFC control seems to be before target onset since TMS significantly increased the percentage of antisaccade errors at that time interval. The FEF seems to be important for the triggering of correct antisaccades. Bilateral stimulation of the DLPFC could demonstrate parallel information-processing transfer in spatial working memory during memory-guided saccades.
Resumo:
This work, as it was originally planned, was the arranging of an apparatus whereby electrical resistivity measurements could be made on powder compacts. It was also to include measurements on a series of copper-nickel compacts both before and after sintering.
Resumo:
Although powder metallurgical methods have been used for years to fabricate tungsten and platinum, very little scientific data have been recorded until the beginning of this century. A large percentage of all commercial production at present is based upon past practice rather than upon scientific knowledge.
Resumo:
The reliable quantification of gene copy number variations is a precondition for future investigations regarding their functional relevance. To date, there is no generally accepted gold standard method for copy number quantification, and methods in current use have given inconsistent results in selected cohorts. In this study, we compare two methods for copy number quantification. beta-defensin gene copy numbers were determined in parallel in 80 genomic DNA samples by real-time PCR and multiplex ligation-dependent probe amplification (MLPA). The pyrosequencing-based paralog ratio test (PPRT) was used as a standard of comparison in 79 out of 80 samples. Realtime PCR and MPLA results confirmed concordant DEFB4, DEFB103A, and DEFB104A copy numbers within samples. These two methods showed identical results in 32 out of 80 samples; 29 of these 32 samples comprised four or fewer copies. The coefficient of variation of MLPA is lower compared with PCR. In addition, the consistency between MLPA and PPRT is higher than either PCR/MLPA or PCR/PPRT consistency. In summary, these results suggest that MLPA is superior to real-time PCR in beta-defensin copy number quantification.
Resumo:
INTRODUCTION Vasospastic brain infarction is a devastating complication of aneurysmal subarachnoid hemorrhage (SAH). Using a probe for invasive monitoring of brain tissue oxygenation or blood flow is highly focal and may miss the site of cerebral vasospasm (CVS). Probe placement is based on the assumption that the spasm will occur either at the dependent vessel territory of the parent artery of the ruptured aneurysm or at the artery exposed to the focal thick blood clot. We investigated the likelihood of a focal monitoring sensor being placed in vasospasm or infarction territory on a hypothetical basis. METHODS From our database we retrospectively selected consecutive SAH patients with angiographically proven (day 7-14) severe CVS (narrowing of vessel lumen >50%). Depending on the aneurysm location we applied a standard protocol of probe placement to detect the most probable site of severe CVS or infarction. We analyzed whether the placement was congruent with existing CVS/infarction. RESULTS We analyzed 100 patients after SAH caused by aneurysms located in the following locations: MCA (n = 14), ICA (n = 30), A1CA (n = 4), AcoA or A2CA (n = 33), and VBA (n = 19). Sensor location corresponded with CVS territory in 93% of MCA, 87% of ICA, 76% of AcoA or A2CA, but only 50% of A1CA and 42% of VBA aneurysms. The focal probe was located inside the infarction territory in 95% of ICA, 89% of MCA, 78% of ACoA or A2CA, 50% of A1CA and 23% of VBA aneurysms. CONCLUSION The probability that a single focal probe will be situated in the territory of severe CVS and infarction varies. It seems to be reasonably accurate for MCA and ICA aneurysms, but not for ACA or VBA aneurysms.
Resumo:
One hundred eighty-nine mixed breed beef heifers from 13 consignors enrolled in the MACEP heifer development project were utilized in this study. Heifers were synchronized by feeding 0.5 mg melengestrol acetate (MGA) per head per day for 14 days followed by an injection of prostaglandin F2a (PGF2a; 25 mg Lutalyse®) 17 days after the last MGA feeding. Each heifer was fitted with a Heatwatch® transmitter on the morning of PGF2a administration to facilitate detection of estrus. Vaginal conductivity measurements were taken using an Ovatec® probe every 12 hours for 96 hours beginning at the time of PGF2a injection. Heifers randomly assigned to produce a female calf were inseminated near the onset of estrus (as indicated by probe values of £ 55 on the decline). Heifers randomly assigned to produce a male calf were inseminated approximately 24 hours after the onset of estrus (as indicated by probe values of ³ 60 on the incline). All heifers not inseminated by 96 hours after PGF2a were mass inseminated in an attempt to impregnate as many heifers as possible. Heifers that were diagnosed as pregnant as a result of the artificial insemination were subjected to ultrasonography for fetal sex determination. Only 70 of the 189 heifers (37.0%) exhibited estrus according to Heatwatch® and incidence of estrus was influenced by heifer average daily gain, reproductive tract score, and disposition score. Heifers receiving a disposition score of 3 (78.7) had a higher (P<.05) probe reading at AI than those receiving a disposition score of 1 or 2 (70.8 and 72.5, respectively). Heifers with probe readings at insemination of 80 - 84 and > 84 had lower (P<.05) pregnancy rates to AI (13.6 and 0.0%, respectively) than heifers with probe readings in the ranges of < 60, 60 - 64, 65 - 69, 70 - 74, and 75 - 79 (35.7, 40.9, 31.4, 35.3, and 26.9% respectively). Heifers that were bred when probe values were increasing had a lower (P<.05) percentage of male fetuses (34.4%) than those bred during a period of decreasing probe values (69.2% male fetuses). These results demonstrate that a vaginal conductivity probe may be a useful tool to determine an insemination time that could potentially alter calf sex ratio.
Resumo:
Long-term surface ECG is routinely used to diagnose paroxysmal arrhythmias. However, this method only provides information about the heart's electrical activity. To this end, we investigated a novel esophageal catheter that features synchronous esophageal ECG and acceleration measurements, the latter being a record of the heart's mechanical activity. The acceleration data were quantified in a small study and successfully linked to the activity sequences of the heart in all subjects. The acceleration signals were additionally transformed into motion. The extracted cardiac motion was proved to be a valid reference input for an adaptive filter capable of removing relevant baseline wandering in the recorded esophageal ECGs. Taking both capabilities into account, the proposed recorder might be a promising tool for future long-term heart monitoring.
Resumo:
INTRODUCTION Hemodynamic management in intensive care patients guided by blood pressure and flow measurements often do not sufficiently reveal common hemodynamic problems. Trans-esophageal echocardiography (TEE) allows for direct measurement of cardiac volumes and function. A new miniaturized probe for TEE (mTEE) potentially provides a rapid and simplified approach to monitor cardiac function. The aim of the study was to assess the feasibility of hemodynamic monitoring using mTEE in critically ill patients after a brief operator training period. METHODS In the context of the introduction of mTEE in a large ICU, 14 ICU staff specialists with no previous TEE experience received six hours of training as mTEE operators. The feasibility of mTEE and the quality of the obtained hemodynamic information were assessed. Three standard views were acquired in hemodynamically unstable patients: 1) for assessment of left ventricular function (LV) fractional area change (FAC) was obtained from a trans-gastric mid-esophageal short axis view, 2) right ventricular (RV) size was obtained from mid-esophageal four chamber view, and 3) superior vena cava collapsibility for detection of hypovolemia was assessed from mid-esophageal ascending aortic short axis view. Off-line blinded assessment by an expert cardiologist was considered as a reference. Inter-rater agreement was assessed using Chi-square tests or correlation analysis as appropriate. RESULTS In 55 patients, 148 mTEE examinations were performed. Acquisition of loops in sufficient quality was possible in 110 examinations for trans-gastric mid-esophageal short axis, 118 examinations for mid-esophageal four chamber and 125 examinations for mid-esophageal ascending aortic short axis view. Inter-rater agreement (Kappa) between ICU mTEE operators and the reference was 0.62 for estimates of LV function, 0.65 for RV dilatation, 0.76 for hypovolemia and 0.77 for occurrence of pericardial effusion (all P < 0.0001). There was a significant correlation between the FAC measured by ICU operators and the reference (r = 0.794, P (one-tailed) < 0.0001). CONCLUSIONS Echocardiographic examinations using mTEE after brief bed-side training were feasible and of sufficient quality in a majority of examined ICU patients with good inter-rater reliability between mTEE operators and an expert cardiologist. Further studies are required to assess the impact of hemodynamic monitoring by mTEE on relevant patient outcomes.
Resumo:
A measurement of angular correlations in Drell-Yan lepton pairs via the phi(eta)* observable is presented. This variable probes the same physics as the Z/gamma* boson transverse momentum with a better experimental resolution. The Z/gamma* -> e(+)e(-) and Z/gamma* -> mu(+)mu(-) decays produced in proton-proton collisions at a centre-of-mass energy of root s = 7 TeV are used. The data were collected with the ATLAS detector at the LHC and correspond to an integrated luminosity of 4.6 fb(-1). Normalised differential cross sections as a function of phi(eta)* are measured separately for electron and muon decay channels. These channels are then combined for improved accuracy. The cross section is also measured double differentially as a function of phi(eta)* for three independent bins of the Z boson rapidity. The results are compared to QCD calculations and to predictions from different Monte Carlo event generators. The data are reasonably well described, in all measured Z boson rapidity regions, by resummed QCD predictions combined with fixed-order perturbative QCD calculations or by some Monte Carlo event generators. The measurement precision is typically better by one order of magnitude than present theoretical uncertainties.
Resumo:
seinen Glaubensgenossen vorgelegt von A. Bock
Resumo:
STUDY OBJECTIVE To determine the effectiveness of an esophageal doppler device to non-invasively detect experimental pseudo-electromechanical dissociation (pseudo-EMD). DESIGN Prospective, controlled, laboratory investigation using an asphyxial canine cardiac arrest model and a newly-developed esophageal flat-flow probe doppler unit. INTERVENTIONS Mongrel dogs (20) were instrumented for hemodynamic monitoring. The esophageal doppler probe was placed in the distal esophagus of each animal. Electromechanical dissociation (EMD) was induced by clamping the endotracheal tube. MEASUREMENTS AND MAIN RESULTS A period of pseudo-EMD was defined as the time where cardiac contractility was present, measured by a micromanometer tipped thoracic aortic catheter, without concurrent femoral pulses by palpation. The pseudo-EMD period could be produced consistently in all 20 animals. The characteristic doppler flow sounds were easily heard using the esophageal device in all animals. The time from endotracheal tube clamping until loss of femoral pulses was 622 +/- 96 s; until loss of radial artery doppler signals was 616 +/- 92 s; until loss of esophageal doppler signals was 728 +/- 88 s; and until loss of aortic fluctuations by thoracic aortic catheter was 728 +/- 82 s. The times to loss of esophageal doppler sounds and loss of aortic fluctuations were not significantly different. However, they were significantly longer than the time to loss of femoral pulses (P < 0.02). CONCLUSIONS The canine asphyxial EMD model can be used for short experimental studies of pseudo-EMD. Pseudo-EMD can be consistently and non-invasively detected with this esophageal doppler device. The device is as reliable as a micromanometer tipped aortic arch catheter in detecting pseudo-EMD. The doppler device could potentially be useful in improving recognition of near cardiac arrest in pre-hospital and emergency department settings. Further research on the utility of this device in other models of low-flow states should be performed.