949 resultados para Resin-modified glass ionomer cement
Resumo:
Objectives. To compare three different designs for measuring the bond strength between Y-TZP ceramic and a composite material, before and after ceramic surface treatment, evaluating the influence of the size of the adhesive interface for each design.Methods. 'Macro'tensile, microtensile, 'macro'shear, microshear, 'macro'push-out, and micropush-out tests were carried out. Two Y-TZP surface treatments were evaluated: silanization (sil) and tribochemical silica coating (30 mu m silica-modified Al2O3 particles + silanization) (TBS). Failure mode analysis of tested samples was also performed. Results. Both the surface treatment and the size of the bonded interface significantly affected the results (p = 0.00). Regardless of the type of surface treatment, the microtensile and microshear tests had higher values than their equivalent "macro" tests. However, the push-out test showed the highest values for the "macro" test. The tensile tests showed the greatest variability in results. The tribochemical silica coating method significantly increased bond strength for all tests.Significance. Different test designs can change the outcome for Y-TZP/cement interfaces, in terms of mean values and reliability (variability). The 'micro'tests expressed higher bond strengths than their equivalent 'macro'tests, with the exception of the push-out test (macro > micro). (C) 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
To evaluate the transdentinal cytotoxicity of resin-based luting cements (RBLCs), with no HEMA in their composition, to odontoblast-like cells. Human dentine discs 0.3 mm thick were adapted to artificial pulp chambers (APCs) and placed in wells of 24-well plates containing 1 mL of culture medium (DMEM). Two categories of HEMA-free RBLCs were evaluated: group 1, self-adhesive Rely X Unicem (RU; 3M ESPE), applied directly to the dentine substrate; and group 2, Rely X ARC (RARC; 3M ESPE), applied to dentine previously acid-etched and treated with a bonding agent. In group 3 (control), considered as representing 100% cell metabolic activity, no treatment was performed on dentine. The APC/disc sets were incubated for 24 h or 7 days at 37 °C and 5% CO2 . Then, the extracts (DMEM + dental materials components that diffused through dentine) were applied to cultured odontoblast-like MDPC-23 cells for 24 h. After that, the cell viability (MTT assay), cell morphology (SEM), total protein production (TP) and alkaline phosphatase (ALP) activity were assessed. Data from MTT assay and TP production were analysed by Kruskal-Wallis and Mann-Whitney tests (α = 5%). Data from ALP activity were analysed by one-way anova and Tukey's test (α = 5%). In group 1, a slight reduction in cell viability (11.6% and 16.8% for 24-h and 7-day periods, respectively) and ALP activity (13.5% and 17.9% for 24-h and 7-day periods, respectively) was observed, with no significant difference from group 3 (control) (P > 0.05). In group 2, a significant reduction in cell viability, TP production and ALP activity compared with group 3 (control) occurred (P < 0.05), regardless of incubation time. Alteration in MDPC-23 cell morphology was observed only in group 2. HEMA-free Rely X ARC cement caused greater toxicity to odontoblast-like MDPC-23 cells than did Rely X Unicem cement when both resin-based luting materials were applied to dentine as recommended by the manufacturer.
Resumo:
Aims and Objectives: The aim of this study was to analyze the microhardness of three resin cements used in cementing glass fiber posts in bovine incisor. The microhardness was analyzed in cervical, middle and apical thirds before and after thermocycling process. Materials and Methods: Bovine teeth were instrumented and divided into 3 groups composed of 10 teeth each. Then, the teeth were sectioned and obturated and had their canals prepared at a depth of 12mm. Once proceeded the desobturation, the roots and glass fiber posts were prepared for adhesive cementation. After cementation, the microhardness reading was carried out. After initial reading, the samples were placed in a thermocycler and subjected to 2,000 cycles and a new microhardness reading. The data collected were subjected to analysis of variance (ANOVA) and Turkey’s test. Results: It was observed a statistical difference among the microhardness of resin cements. However, the statistical difference of microhardness before and after thermocycling appeared only in group U-200. Conclusion: Thermocycling reduced microhardness values in all cements evaluated in this study. The autopolymerizing cement Multilink presented the most stable microhardness mean values after thermocycling in the coronal, middle and apical thirds.
Resumo:
Objective: This confocal microscopy study evaluated the cement/dentin and cement/post interfaces along theroot canalwallswhenfiberglasspostswerebonded to dentin using different types of cements. Material & Methods: Thirty endodontically treated premolars were divided into 3 groups according to the adhesive materials used in the bonding procedure: Prime & Bond 2.1/Self Cure + Enforce, RelyX Unicem and RelyX Luting. Rhodamine B dye was incorporated in the luting materials for the cementation of the fiber glass posts (Exacto, Angelus) to dentin. Three transversal slices (apical, middle and coronal) were examined under confocal laser scanning microscopy. Statistical analysis was performed using the Kappa, Kruskal-Wallis and Dunnet tests, in a significance level of 5%. Results: The Prime & Bond 2.1/Self Cure + Enforce presented a uniform formation of tags in the dentin but gaps in the cement/dentin interface. The RelyX Unicem and RelyX Luting presented an adhesive interface with a fewer amount of gaps, but showed shorter tag formation than the Enforce system. All cements presented the same pattern of bubbles inside the cements. The RelyX Luting presented a greater amount of cracks inside the cement in comparison with the other cements in the coronal third, while no difference was observed between RelyX Unicem and Enforce. The RelyX Luting showed the lowest quantity of cement penetration into the post. Conclusion: In general, the quality of bonding interfaces of fiber posts luted to root canals was affected by both location and type of cement.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Objectives. To purpose a method for predicting the shrinkage stress development in the adhesive layer of resin-composite cylinders that shrink bonded to a single flat surface, by measuring the deflection of a glass coverslip caused by the shrinkage of the bonded cylinders. The correlation between the volume of the bonded resin-composite and the stress-peak was also investigated. Methods. A glass coverslip deflection caused by the shrinkage of a bonded resin-composite cylinder (diameter: d = 8 mm, 4 mm, or 2 mm, height: h = 4 mm, 2 mm, 1 mm, or 0.5 mm) was measured, and the same set-up was simulated by finite element analysis (3D-FEA). Stresses generated in the adhesive layer were plotted versus two geometric variables of the resin-composite cylinder (C-Factor and volume) to verify the existence of correlations between them and stresses. Results. The FEA models were validated. A significant correlation (p < 0.01, Pearson's test) between the stress-peak and the coverslip deflection when the resin-composites were grouped by diameter was found for diameters of 2 and 4 mm. The stress-peak of the whole set of data showed a logarithmic correlation with the bonded resin-composite volume (p < 0.001, Pearson's test), but did not correlate with the C-Factor. Significance. The described method should be considered for standardizing the stress generated by the shrinkage of resin-composite blocks bonded to a single flat surface. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: The aim of this study was to investigate the internal fit (IF) of glass-infiltrated alumina (ICA - In-Ceram Alumina), yttria-stabilized tetragonal zirconia polycrystals (Y-TZP - IPS e.max ZirCAD), and metal-ceramic (MC - Ni-Cr alloy) crowns. Material and Methods: Sixty standardized resin-tooth replicas of a maxillary first molar were produced for crown placement and divided into 3 groups (n=20 each) according to the core material used (metal, ICA or Y-TZP). The IF of the crowns was measured using the replica technique, which employs a light body polyvinyl siloxane impression material to simulate the cement layer thickness. The data were analyzed according to the surfaces obtained for the occlusal space (OS), axial space (AS) and total mean (TM) using two-way ANOVA with Tukey's multiple comparison test (p<0.05). Results: No differences among the different areas were detected in the MC group. For the Y-TZP and ICA groups, AS was statistically lower than both OS and TM. No differences in AS were observed among the groups. However, OS and TM showed significantly higher values for ICA and Y-TZP groups than MC group. Comparisons of ICA and Y-TZP revealed that OS was significantly lower for Y-TZP group, whereas no differences were observed for TM. Conclusions: The total mean achieved by all groups was within the range of clinical acceptability. However, the metal-ceramic group demonstrated significantly lower values than the all-ceramic groups, especially in OS.
Resumo:
Objectives. Verify the influence of different filler distributions on the subcritical crack growth (SCG) susceptibility, Weibull parameters (m and sigma(0)) and longevity estimated by the strength-probability-time (SPT) diagram of experimental resin composites. Methods. Four composites were prepared, each one containing 59 vol% of glass powder with different filler sizes (d(50) = 0.5; 0.9; 1.2 and 1.9 mu m) and distributions. Granulometric analyses of glass powders were done by a laser diffraction particle size analyzer (Sald-7001, Shimadzu, USA). SCG parameters (n and sigma(f0)) were determined by dynamic fatigue (10(-2) to 10(2) MPa/s) using a biaxial flexural device (12 x 1.2 mm; n = 10). Twenty extra specimens of each composite were tested at 10(0) MPa/s to determine m and sigma(0). Specimens were stored in water at 37 degrees C for 24 h. Fracture surfaces were analyzed under SEM. Results. In general, the composites with broader filler distribution (C0.5 and C1.9) presented better results in terms of SCG susceptibility and longevity. C0.5 and C1.9 presented higher n values (respectively, 31.2 +/- 6.2(a) and 34.7 +/- 7.4(a)). C1.2 (166.42 +/- 0.01(a)) showed the highest and C0.5 (158.40 +/- 0.02(d)) the lowest sigma(f0) value (in MPa). Weibull parameters did not vary significantly (m: 6.6 to 10.6 and sigma(0): 170.6 to 176.4 MPa). Predicted reductions in failure stress (P-f = 5%) for a lifetime of 10 years were approximately 45% for C0.5 and C1.9 and 65% for C0.9 and C1.2. Crack propagation occurred through the polymeric matrix around the fillers and all the fracture surfaces showed brittle fracture features. Significance. Composites with broader granulometric distribution showed higher resistance to SCG and, consequently, higher longevity in vitro. (C) 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Objectives: To determine the micro-hardness profile of two dual cure resin cements (RelyX - U100 (R), 3M-ESPE and Panavia F 2.0 (R), Kuraray) used for cementing fiber-reinforced resin posts (Fibrekor (R) - Jeneric Pentron) under three different curing protocols and two water storage times. Material and methods: Sixty 16mm long bovine incisor roots were endodontically treated and prepared for cementation of the Fibrekor posts. The cements were mixed as instructed, dispensed in the canal, the posts were seated and the curing performed as follows: a) no light activation; b) light-activation immediately after seating the post, and; c) light-activation delayed 5 minutes after seating the post. The teeth were stored in water and retrieved for analysis after 7 days and 3 months. The roots were longitudinally sectioned and the microhardness was determined at the cervical, middle and apical regions along the cement line. The data was analyzed by the three-way ANOVA test (curing mode, storage time and thirds) for each cement. The Tukey test was used for the post-hoc analysis. Results: Light-activation resulted in a significant increase in the microhardness. This was more evident for the cervical region and for the Panavia cement. Storage in water for 3 months caused a reduction of the micro-hardness for both cements. The U100 cement showed less variation in the micro-hardness regardless of the curing protocol and storage time. Conclusions: The micro-hardness of the cements was affected by the curing and storage variables and were material-dependent.