891 resultados para Regional energy policy


Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper focuses on the role of the European Union (EU) in the formation of India’s climate change policy; an increasingly high profile issue area. It is based on an extensive study of relevant literature, EU-India policy documents and the execution of thirteen semi-structured interviews with experts; many of whom have experienced EU-India cooperation on climate change first-hand. A three-point typology will be used to assess the extent of the EU’s leadership role, supporting role or equal partnership role in India, with several sub-roles within these categories. Further, for clarity and chronology purposes, three time periods will be distinguished to assess how India’s climate policy has evolved over time, alongside the EU’s role within that. The findings of the paper confirm that the EU has demonstrated signs of all three roles to some degree, although the EU-India relationship in climate policy is increasingly an equal partnership. It offers explanations for previous shortcomings in EU-India climate policy as well as policy recommendations to help ensure more effective cooperation and implementation of policies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Of the technologies currently available for producing energy from renewable sources in the British climate all except one depend on a single ingredient, namely land. Therefore other than offshore wind generation, which has been slow and expensive to establish, renewables have had to be derived almost entirely from the land, whether as sites for turbines or areas on which to grow feedstocks for biomass and biofuels. Of these, only wind turbines have been developed in any number while economic conditions have until now been unfavourable for biomass and biofuel. The UK is unlikely to meet its present targets under the Kyoto agreement, due to a mixture of limited funding and problems of policy. Peter Prag examines the present position and the potential outlook.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper examines the cost-effectiveness of British regional policy during the 1930s. It takes issue with Correlli Barnett, who has argued that regional policy measures introduced from 1945 were already shown to be inefficient by the failure of similar assistance during the 1930s. The evolution of the main 1930s initiatives that influenced post-war policy is discussed and their effectiveness assessed. When account is taken of savings in government welfare payments these initiatives are shown to have been very cost-effective, producing an annual return to the exchequer of around 56%, or more.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract This study presents a model intercomparison of four regional climate models (RCMs) and one variable resolution atmospheric general circulation model (AGCM) applied over Europe with special focus on the hydrological cycle and the surface energy budget. The models simulated the 15 years from 1979 to 1993 by using quasi-observed boundary conditions derived from ECMWF re-analyses (ERA). The model intercomparison focuses on two large atchments representing two different climate conditions covering two areas of major research interest within Europe. The first is the Danube catchment which represents a continental climate dominated by advection from the surrounding land areas. It is used to analyse the common model error of a too dry and too warm simulation of the summertime climate of southeastern Europe. This summer warming and drying problem is seen in many RCMs, and to a less extent in GCMs. The second area is the Baltic Sea catchment which represents maritime climate dominated by advection from the ocean and from the Baltic Sea. This catchment is a research area of many studies within Europe and also covered by the BALTEX program. The observed data used are monthly mean surface air temperature, precipitation and river discharge. For all models, these are used to estimate mean monthly biases of all components of the hydrological cycle over land. In addition, the mean monthly deviations of the surface energy fluxes from ERA data are computed. Atmospheric moisture fluxes from ERA are compared with those of one model to provide an independent estimate of the convergence bias derived from the observed data. These help to add weight to some of the inferred estimates and explain some of the discrepancies between them. An evaluation of these biases and deviations suggests possible sources of error in each of the models. For the Danube catchment, systematic errors in the dynamics cause the prominent summer drying problem for three of the RCMs, while for the fourth RCM this is related to deficiencies in the land surface parametrization. The AGCM does not show this drying problem. For the Baltic Sea catchment, all models similarily overestimate the precipitation throughout the year except during the summer. This model deficit is probably caused by the internal model parametrizations, such as the large-scale condensation and the convection schemes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The impact of climate change on wind power generation potentials over Europe is investigated by considering ensemble projections from two regional climate models (RCMs) driven by a global climate model (GCM). Wind energy density and its interannual variability are estimated based on hourly near-surface wind speeds. Additionally, the possible impact of climatic changes on the energy output of a sample 2.5-MW turbine is discussed. GCM-driven RCM simulations capture the behavior and variability of current wind energy indices, even though some differences exist when compared with reanalysis-driven RCM simulations. Toward the end of the twenty-first century, projections show significant changes of energy density on annual average across Europe that are substantially stronger in seasonal terms. The emergence time of these changes varies from region to region and season to season, but some long-term trends are already statistically significant in the middle of the twenty-first century. Over northern and central Europe, the wind energy potential is projected to increase, particularly in winter and autumn. In contrast, energy potential over southern Europe may experience a decrease in all seasons except for the Aegean Sea. Changes for wind energy output follow the same patterns but are of smaller magnitude. The GCM/RCM model chains project a significant intensification of both interannual and intra-annual variability of energy density over parts of western and central Europe, thus imposing new challenges to a reliable pan-European energy supply in future decades.